These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22966829)
41. Prediction of pKa and redox properties in the thioredoxin superfamily. Moutevelis E; Warwicker J Protein Sci; 2004 Oct; 13(10):2744-52. PubMed ID: 15340164 [TBL] [Abstract][Full Text] [Related]
42. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Maeda K; Hägglund P; Finnie C; Svensson B; Henriksen A Structure; 2006 Nov; 14(11):1701-10. PubMed ID: 17098195 [TBL] [Abstract][Full Text] [Related]
43. Atomic resolution crystal structure of glutaredoxin 1 from Plasmodium falciparum and comparison with other glutaredoxins. Yogavel M; Tripathi T; Gupta A; Banday MM; Rahlfs S; Becker K; Belrhali H; Sharma A Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):91-100. PubMed ID: 24419382 [TBL] [Abstract][Full Text] [Related]
44. Structure-guided activity enhancement and catalytic mechanism of yeast grx8. Tang Y; Zhang J; Yu J; Xu L; Wu J; Zhou CZ; Shi Y Biochemistry; 2014 Apr; 53(13):2185-96. PubMed ID: 24611845 [TBL] [Abstract][Full Text] [Related]
45. Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Feng Y; Zhong N; Rouhier N; Hase T; Kusunoki M; Jacquot JP; Jin C; Xia B Biochemistry; 2006 Jul; 45(26):7998-8008. PubMed ID: 16800625 [TBL] [Abstract][Full Text] [Related]
46. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA. Carvalho AT; Fernandes PA; Ramos MJ J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531 [TBL] [Abstract][Full Text] [Related]
47. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases. Mössner E; Huber-Wunderlich M; Glockshuber R Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329 [TBL] [Abstract][Full Text] [Related]
48. Active-site properties of the oxidized and reduced C-terminal domain of DsbD obtained by NMR spectroscopy. Mavridou DA; Stevens JM; Ferguson SJ; Redfield C J Mol Biol; 2007 Jul; 370(4):643-58. PubMed ID: 17544440 [TBL] [Abstract][Full Text] [Related]
49. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues. García-Mayoral MF; Pérez-Cañadillas JM; Santoro J; Ibarra-Molero B; Sanchez-Ruiz JM; Lacadena J; Martínez del Pozo A; Gavilanes JG; Rico M; Bruix M Biochemistry; 2003 Nov; 42(45):13122-33. PubMed ID: 14609322 [TBL] [Abstract][Full Text] [Related]
50. Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site. Couturier J; Koh CS; Zaffagnini M; Winger AM; Gualberto JM; Corbier C; Decottignies P; Jacquot JP; Lemaire SD; Didierjean C; Rouhier N J Biol Chem; 2009 Apr; 284(14):9299-310. PubMed ID: 19158074 [TBL] [Abstract][Full Text] [Related]
51. Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins. Liedgens L; Zimmermann J; Wäschenbach L; Geissel F; Laporte H; Gohlke H; Morgan B; Deponte M Nat Commun; 2020 Apr; 11(1):1725. PubMed ID: 32265442 [TBL] [Abstract][Full Text] [Related]
52. Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase. Yuan Y; Knaggs M; Poole L; Fetrow J; Salsbury F J Biomol Struct Dyn; 2010 Aug; 28(1):51-70. PubMed ID: 20476795 [TBL] [Abstract][Full Text] [Related]
53. Phosphines are ribonucleotide reductase reductants that act via C-terminal cysteines similar to thioredoxins and glutaredoxins. Domkin V; Chabes A Sci Rep; 2014 Jul; 4():5539. PubMed ID: 24986213 [TBL] [Abstract][Full Text] [Related]
54. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Roos G; Foloppe N; Messens J Antioxid Redox Signal; 2013 Jan; 18(1):94-127. PubMed ID: 22746677 [TBL] [Abstract][Full Text] [Related]
55. Conformational analysis of the eight-membered ring of the oxidized cysteinyl-cysteine unit implicated in nicotinic acetylcholine receptor ligand recognition. Creighton CJ; Reynolds CH; Lee DH; Leo GC; Reitz AB J Am Chem Soc; 2001 Dec; 123(50):12664-9. PubMed ID: 11741432 [TBL] [Abstract][Full Text] [Related]
56. The primary structure of calf thymus glutaredoxin. Homology with the corresponding Escherichia coli protein but elongation at both ends and with an additional half-cystine/cysteine pair. Klintrot IM; Höög JO; Jörnvall H; Holmgren A; Luthman M Eur J Biochem; 1984 Nov; 144(3):417-23. PubMed ID: 6386471 [TBL] [Abstract][Full Text] [Related]
57. Reduction pathway of glutaredoxin 1 investigated with QM/MM molecular dynamics using a neural network correction. Böser J; Kubař T; Elstner M; Maag D J Chem Phys; 2022 Oct; 157(15):154104. PubMed ID: 36272777 [TBL] [Abstract][Full Text] [Related]
58. Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. Powlowski J; Sahlman L J Biol Chem; 1999 Nov; 274(47):33320-6. PubMed ID: 10559209 [TBL] [Abstract][Full Text] [Related]
59. Solution structures of reduced and oxidized bacteriophage T4 glutaredoxin. Wang Y; Amegbey G; Wishart DS J Biomol NMR; 2004 May; 29(1):85-90. PubMed ID: 15017142 [No Abstract] [Full Text] [Related]
60. Computational investigations on the catalytic mechanism of maleate isomerase: the role of the active site cysteine residues. Dokainish HM; Ion BF; Gauld JW Phys Chem Chem Phys; 2014 Jun; 16(24):12462-74. PubMed ID: 24827730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]