These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 22966869)
1. Role of arginine 29 and glutamic acid 81 interactions in the conformational stability of human chloride intracellular channel 1. Legg-E'silva D; Achilonu I; Fanucchi S; Stoychev S; Fernandes M; Dirr HW Biochemistry; 2012 Oct; 51(40):7854-62. PubMed ID: 22966869 [TBL] [Abstract][Full Text] [Related]
2. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1. Achilonu I; Fanucchi S; Cross M; Fernandes M; Dirr HW Biochemistry; 2012 Feb; 51(5):995-1004. PubMed ID: 22242893 [TBL] [Abstract][Full Text] [Related]
3. Glutamate 85 and glutamate 228 contribute to the pH-response of the soluble form of chloride intracellular channel 1. Cross M; Fernandes M; Dirr H; Fanucchi S Mol Cell Biochem; 2015 Jan; 398(1-2):83-93. PubMed ID: 25209805 [TBL] [Abstract][Full Text] [Related]
4. Formation of an unfolding intermediate state of soluble chloride intracellular channel protein CLIC1 at acidic pH. Fanucchi S; Adamson RJ; Dirr HW Biochemistry; 2008 Nov; 47(44):11674-81. PubMed ID: 18850721 [TBL] [Abstract][Full Text] [Related]
5. Transmembrane extension and oligomerization of the CLIC1 chloride intracellular channel protein upon membrane interaction. Goodchild SC; Angstmann CN; Breit SN; Curmi PM; Brown LJ Biochemistry; 2011 Dec; 50(50):10887-97. PubMed ID: 22082111 [TBL] [Abstract][Full Text] [Related]
6. Metamorphic response of the CLIC1 chloride intracellular ion channel protein upon membrane interaction. Goodchild SC; Howell MW; Littler DR; Mandyam RA; Sale KL; Mazzanti M; Breit SN; Curmi PM; Brown LJ Biochemistry; 2010 Jun; 49(25):5278-89. PubMed ID: 20507120 [TBL] [Abstract][Full Text] [Related]
7. Trimeric structure of the wild soluble chloride intracellular ion channel CLIC4 observed in crystals. Li Y; Li D; Zeng Z; Wang D Biochem Biophys Res Commun; 2006 May; 343(4):1272-8. PubMed ID: 16581025 [TBL] [Abstract][Full Text] [Related]
8. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
9. Membrane mimetics induce helix formation and oligomerization of the chloride intracellular channel protein 1 transmembrane domain. Peter B; Ngubane NC; Fanucchi S; Dirr HW Biochemistry; 2013 Apr; 52(16):2739-49. PubMed ID: 23547926 [TBL] [Abstract][Full Text] [Related]
10. Structure of the Janus protein human CLIC2. Cromer BA; Gorman MA; Hansen G; Adams JJ; Coggan M; Littler DR; Brown LJ; Mazzanti M; Breit SN; Curmi PM; Dulhunty AF; Board PG; Parker MW J Mol Biol; 2007 Nov; 374(3):719-31. PubMed ID: 17945253 [TBL] [Abstract][Full Text] [Related]
12. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper. Marti DN; Bosshard HR Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933 [TBL] [Abstract][Full Text] [Related]
13. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Ionescu RM; Eftink MR Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin. Barrick D; Hughson FM; Baldwin RL J Mol Biol; 1994 Apr; 237(5):588-601. PubMed ID: 8158639 [TBL] [Abstract][Full Text] [Related]
15. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137 [TBL] [Abstract][Full Text] [Related]
16. Conformational stability changes of the amino terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system produced by substituting alanine or glutamate for the active-site histidine 189: implications for phosphorylation effects. Ginsburg A; Szczepanowski RH; Ruvinov SB; Nosworthy NJ; Sondej M; Umland TC; Peterkofsky A Protein Sci; 2000 Jun; 9(6):1085-94. PubMed ID: 10892802 [TBL] [Abstract][Full Text] [Related]
17. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor. Liu Y; Breslauer K; Anderson S Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. Horng JC; Cho JH; Raleigh DP J Mol Biol; 2005 Jan; 345(1):163-73. PubMed ID: 15567419 [TBL] [Abstract][Full Text] [Related]
19. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. Sato S; Raleigh DP J Mol Biol; 2002 Apr; 318(2):571-82. PubMed ID: 12051860 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. Harrop SJ; DeMaere MZ; Fairlie WD; Reztsova T; Valenzuela SM; Mazzanti M; Tonini R; Qiu MR; Jankova L; Warton K; Bauskin AR; Wu WM; Pankhurst S; Campbell TJ; Breit SN; Curmi PM J Biol Chem; 2001 Nov; 276(48):44993-5000. PubMed ID: 11551966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]