These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22967129)

  • 1. Modeling coding-sequence evolution within the context of residue solvent accessibility.
    Scherrer MP; Meyer AG; Wilke CO
    BMC Evol Biol; 2012 Sep; 12():179. PubMed ID: 22967129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating sequence variation and protein structure to identify sites under selection.
    Meyer AG; Wilke CO
    Mol Biol Evol; 2013 Jan; 30(1):36-44. PubMed ID: 22977116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between relative solvent accessibility and evolutionary rate in protein evolution.
    Ramsey DC; Scherrer MP; Zhou T; Wilke CO
    Genetics; 2011 Jun; 188(2):479-88. PubMed ID: 21467571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent effects of protein core size and expression on residue-level structure-evolution relationships.
    Franzosa EA; Xia Y
    PLoS One; 2012; 7(10):e46602. PubMed ID: 23056364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Determinants of Yeast Protein-Protein Interaction Interface Evolution at the Residue Level.
    Pollet L; Lambourne L; Xia Y
    J Mol Biol; 2022 Oct; 434(19):167750. PubMed ID: 35850298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear regression models for solvent accessibility prediction in proteins.
    Wagner M; Adamczak R; Porollo A; Meller J
    J Comput Biol; 2005 Apr; 12(3):355-69. PubMed ID: 15857247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of protein evolution are context-sensitive at the residue level.
    Franzosa EA; Xia Y
    Mol Biol Evol; 2009 Oct; 26(10):2387-95. PubMed ID: 19597162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relation between residue flexibility and local solvent accessibility in proteins.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    Proteins; 2009 Aug; 76(3):617-36. PubMed ID: 19274736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific structural constraints on protein sequence evolutionary divergence: local packing density versus solvent exposure.
    Yeh SW; Liu JW; Yu SH; Shih CH; Hwang JK; Echave J
    Mol Biol Evol; 2014 Jan; 31(1):135-9. PubMed ID: 24109601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of solvent accessibility and gene expression in modeling protein sequence evolution.
    Wang K; Yu S; Ji X; Lakner C; Griffing A; Thorne JL
    Evol Bioinform Online; 2015; 11():85-96. PubMed ID: 25987828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining prediction of secondary structure and solvent accessibility in proteins.
    Adamczak R; Porollo A; Meller J
    Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations.
    Raas MWD; Dutheil JY
    Mol Ecol; 2024 May; 33(10):e16980. PubMed ID: 37157166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
    Liou YF; Huang HL; Ho SY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):503. PubMed ID: 28155647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative residue-level structure-evolution relationships in the yeast membrane proteome.
    Franzosa EA; Xue R; Xia Y
    Genome Biol Evol; 2013; 5(4):734-44. PubMed ID: 23512408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility.
    Fan C; Liu D; Huang R; Chen Z; Deng L
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):8. PubMed ID: 26818760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjusting for selection on synonymous sites in estimates of evolutionary distance.
    Hirsh AE; Fraser HB; Wall DP
    Mol Biol Evol; 2005 Jan; 22(1):174-7. PubMed ID: 15371530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logistic regression models to predict solvent accessible residues using sequence- and homology-based qualitative and quantitative descriptors applied to a domain-complete X-ray structure learning set.
    Nepal R; Spencer J; Bhogal G; Nedunuri A; Poelman T; Kamath T; Chung E; Kantardjieff K; Gottlieb A; Lustig B
    J Appl Crystallogr; 2015 Dec; 48(Pt 6):1976-1984. PubMed ID: 26664348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of residue accessible surface area on the prediction of protein secondary structures.
    Momen-Roknabadi A; Sadeghi M; Pezeshk H; Marashi SA
    BMC Bioinformatics; 2008 Aug; 9():357. PubMed ID: 18759992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.