BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22967518)

  • 1. A simple strategy to monitor lipase activity using liquid crystal-based sensors.
    Hu QZ; Jang CH
    Talanta; 2012 Sep; 99():36-9. PubMed ID: 22967518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new strategy for imaging biomolecular events through interactions between liquid crystals and oil-in-water emulsions.
    Hu QZ; Jang CH
    Analyst; 2012 Nov; 137(22):5204-7. PubMed ID: 23024975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces.
    Hu QZ; Jang CH
    J Biotechnol; 2012 Jan; 157(1):223-7. PubMed ID: 22138010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease.
    Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):622-6. PubMed ID: 21846586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.
    Han GR; Jang CH
    Talanta; 2014 Oct; 128():44-50. PubMed ID: 25059128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.
    Wang Y; Hu Q; Guo Y; Yu L
    Biosens Bioelectron; 2015 Oct; 72():25-30. PubMed ID: 25957073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring ligand-receptor binding events on polymeric surfaces with periodic wave patterns using liquid crystals.
    Han GR; Jang CH
    Colloids Surf B Biointerfaces; 2012 Jun; 94():89-94. PubMed ID: 22341518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode.
    Duan R; Li Y; He Y; Yuan Y; Li H
    Analyst; 2020 Nov; 145(23):7595-7602. PubMed ID: 32975244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.
    Wang Y; Hu Q; Tian T; Gao Y; Yu L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():100-105. PubMed ID: 27497931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface.
    Liu D; Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2013 Aug; 108():142-6. PubMed ID: 23537831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer.
    Zhang M; Jang CH
    Anal Biochem; 2014 Jun; 455():13-9. PubMed ID: 24708935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4'-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)).
    Omer M; Khan M; Kim YK; Lee JH; Kang IK; Park SY
    Colloids Surf B Biointerfaces; 2014 Sep; 121():400-8. PubMed ID: 25009103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays.
    Hussain Z; Zafiu C; Küpcü S; Pivetta L; Hollfelder N; Masutani A; Kilickiran P; Sinner EK
    Biosens Bioelectron; 2014 Jun; 56():210-6. PubMed ID: 24508543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic anchoring transitions at aqueous-liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins.
    Tan LN; Abbott NL
    J Colloid Interface Sci; 2015 Jul; 449():452-61. PubMed ID: 25731912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer.
    Zhang M; Jang CH
    Chemphyschem; 2014 Aug; 15(12):2569-74. PubMed ID: 24850496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.
    Zhang M; Jang CH
    J Biosci Bioeng; 2015 Aug; 120(2):193-8. PubMed ID: 25656072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.
    Chuang CH; Lin YC; Chen WL; Chen YH; Chen YX; Chen CM; Shiu HW; Chang LY; Chen CH; Chen CH
    Biosens Bioelectron; 2016 Apr; 78():213-220. PubMed ID: 26613511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal-Aqueous Interface.
    Yang X; Tian Y; Li F; Yu Q; Tan SF; Chen Y; Yang Z
    Langmuir; 2019 Feb; 35(7):2490-2497. PubMed ID: 30696245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets.
    Bera T; Deng J; Fang J
    J Phys Chem B; 2014 May; 118(18):4970-5. PubMed ID: 24725234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.