BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22967529)

  • 1. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin.
    Briand VA; Thilakarathne V; Kasi RM; Kumar CV
    Talanta; 2012 Sep; 99():113-8. PubMed ID: 22967529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation.
    Pires IS; Belcher DA; Palmer AF
    Biochemistry; 2017 Oct; 56(40):5245-5259. PubMed ID: 28846391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel manufacturing method for producing apohemoglobin and its biophysical properties.
    Pires IS; Belcher DA; Hickey R; Miller C; Badu-Tawiah AK; Baek JH; Buehler PW; Palmer AF
    Biotechnol Bioeng; 2020 Jan; 117(1):125-145. PubMed ID: 31612988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apohemoglobin-haptoglobin complex attenuates the pathobiology of circulating acellular hemoglobin and heme.
    Munoz CJ; Pires IS; Baek JH; Buehler PW; Palmer AF; Cabrales P
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1296-H1307. PubMed ID: 32302494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.
    Gobi KV; Matsumoto K; Toko K; Ikezaki H; Miura N
    Anal Bioanal Chem; 2007 Apr; 387(8):2727-35. PubMed ID: 17318518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles.
    Matsui J; Akamatsu K; Hara N; Miyoshi D; Nawafune H; Tamaki K; Sugimoto N
    Anal Chem; 2005 Jul; 77(13):4282-5. PubMed ID: 15987138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor.
    Saylan Y; Yılmaz F; Derazshamshir A; Yılmaz E; Denizli A
    J Mol Recognit; 2017 Sep; 30(9):. PubMed ID: 28322473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene.
    Shankaran DR; Gobi KV; Sakai T; Matsumoto K; Toko K; Miura N
    Biosens Bioelectron; 2005 Mar; 20(9):1750-6. PubMed ID: 15681190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor.
    Chang CC; Chiu NF; Lin DS; Chu-Su Y; Liang YH; Lin CW
    Anal Chem; 2010 Feb; 82(4):1207-12. PubMed ID: 20102177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J; Munir A; Zhou HS
    Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG.
    Zhang D; Sun Y; Wu Q; Ma P; Zhang H; Wang Y; Song D
    Talanta; 2016; 146():364-8. PubMed ID: 26695276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate.
    Ding X; Yang KL
    Anal Chem; 2013 Jun; 85(12):5727-33. PubMed ID: 23675691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance-based immunoassay for procalcitonin.
    Vashist SK; Schneider EM; Barth E; Luong JH
    Anal Chim Acta; 2016 Sep; 938():129-36. PubMed ID: 27619095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Human Apohemoglobin Unfolding.
    Samuel PP; Ou WC; Phillips GN; Olson JS
    Biochemistry; 2017 Mar; 56(10):1444-1459. PubMed ID: 28218841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein A modified Au-graphene oxide composite as an enhanced sensing platform for SPR-based immunoassay.
    Zhang J; Sun Y; Wu Q; Zhang H; Bai Y; Song D
    Analyst; 2013 Dec; 138(23):7175-81. PubMed ID: 24116373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip.
    Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA
    Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal enhancement of protein binding by electrodeposited gold nanostructures for applications in Kretschmann-type SPR sensors.
    Nagase N; Terao K; Miyanishi N; Tamai K; Uchiyama N; Suzuki T; Takao H; Shimokawa F; Oohira F
    Analyst; 2012 Nov; 137(21):5034-40. PubMed ID: 23000888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of Fe3O4/Ag/Au composites for immunoassay based on surface plasmon resonance biosensor.
    Wang J; Song D; Zhang H; Zhang J; Jin Y; Zhang H; Zhou H; Sun Y
    Colloids Surf B Biointerfaces; 2013 Feb; 102():165-70. PubMed ID: 23010112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.