BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22967797)

  • 1. The evolution of catalytic residues and enzyme mechanism within the bacterial nucleoside phosphorylase superfamily 1.
    Konrad A; Piškur J; Liberles DA
    Gene; 2012 Dec; 510(2):154-61. PubMed ID: 22967797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analyses reveal two distinct families of nucleoside phosphorylases.
    Pugmire MJ; Ealick SE
    Biochem J; 2002 Jan; 361(Pt 1):1-25. PubMed ID: 11743878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity of uridine and purine nucleoside phosphorylases of the whole cells of Escherichia coli.
    Zintchenko AI; Eroshevskaya LA; Barai VN; Mikhailopulo IA
    Nucleic Acids Symp Ser; 1987; (18):137-40. PubMed ID: 3122186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of substrate-stabilization patterns with proposed mechanisms for three nucleoside phosphorylases.
    Krenitsky TA; Tuttle JV
    Biochim Biophys Acta; 1982 May; 703(2):247-9. PubMed ID: 6805517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected sequence similarity between nucleosidases and phosphoribosyltransferases of different specificity.
    Mushegian AR; Koonin EV
    Protein Sci; 1994 Jul; 3(7):1081-8. PubMed ID: 7920254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of Streptococcus pyogenes uridine phosphorylase reveals a distinct subfamily of nucleoside phosphorylases.
    Tran TH; Christoffersen S; Allan PW; Parker WB; Piskur J; Serra I; Terreni M; Ealick SE
    Biochemistry; 2011 Aug; 50(30):6549-58. PubMed ID: 21707079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Escherichia coli uridine phosphorylase by single-site mutagenesis.
    Oliva I; Zuffi G; Barile D; Orsini G; Tonon G; De Gioia L; Ghisotti D
    J Biochem; 2004 Apr; 135(4):495-9. PubMed ID: 15115774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium.
    Caradoc-Davies TT; Cutfield SM; Lamont IL; Cutfield JF
    J Mol Biol; 2004 Mar; 337(2):337-54. PubMed ID: 15003451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases.
    Krenitsky TA; Koszalka GW; Tuttle JV
    Biochemistry; 1981 Jun; 20(12):3615-21. PubMed ID: 6789872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of Escherichia coli genes encoding nucleoside phosphorylases in the pET/Bl21(DE3) system yields active recombinant enzymes.
    Esipov RS; Gurevich AI; Chuvikovsky DV; Chupova LA; Muravyova TI; Miroshnikov AI
    Protein Expr Purif; 2002 Feb; 24(1):56-60. PubMed ID: 11812223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis.
    Xie X; Huo W; Xia J; Xu Q; Chen N
    Enzyme Microb Technol; 2012 Jun; 51(1):59-65. PubMed ID: 22579392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis.
    Rocchietti S; Ubiali D; Terreni M; Albertini AM; Fernández-Lafuente R; Guisán JM; Pregnolato M
    Biomacromolecules; 2004; 5(6):2195-200. PubMed ID: 15530033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene.
    Dandanell G; Szczepanowski RH; Kierdaszuk B; Shugar D; Bochtler M
    J Mol Biol; 2005 Apr; 348(1):113-25. PubMed ID: 15808857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hexameric purine nucleoside phosphorylase II from Escherichia coli K-12. Physico-chemical and catalytic properties and stabilization with substrates].
    Bezirdzhian KhO; Kocharian ShM; Akopian ZhI
    Biokhimiia; 1987 Oct; 52(10):1624-31. PubMed ID: 3122852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure and activity of a putative trypanosomal nucleoside phosphorylase reveal it to be a homodimeric uridine phosphorylase.
    Larson ET; Mudeppa DG; Gillespie JR; Mueller N; Napuli AJ; Arif JA; Ross J; Arakaki TL; Lauricella A; Detitta G; Luft J; Zucker F; Verlinde CL; Fan E; Van Voorhis WC; Buckner FS; Rathod PK; Hol WG; Merritt EA
    J Mol Biol; 2010 Mar; 396(5):1244-59. PubMed ID: 20070944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine nucleoside phosphorylase. 2. Catalytic mechanism.
    Erion MD; Stoeckler JD; Guida WC; Walter RL; Ealick SE
    Biochemistry; 1997 Sep; 36(39):11735-48. PubMed ID: 9305963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for inhibition of Escherichia coli uridine phosphorylase by 5-substituted acyclouridines.
    Bu W; Settembre EC; el Kouni MH; Ealick SE
    Acta Crystallogr D Biol Crystallogr; 2005 Jul; 61(Pt 7):863-72. PubMed ID: 15983408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of pyrimidine and purine nucleoside phosphorylases by a 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative.
    Vande Voorde J; Quintiliani M; McGuigan C; Liekens S; Balzarini J
    Biochem Pharmacol; 2012 May; 83(10):1358-63. PubMed ID: 22366108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-sphere amino acids contribute to transition-state structure in bovine purine nucleoside phosphorylase.
    Li L; Luo M; Ghanem M; Taylor EA; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2577-83. PubMed ID: 18281958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.