BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22967893)

  • 1. Measuring intermolecular rupture forces with a combined TIRF-optical trap microscope and DNA curtains.
    Lee JY; Wang F; Fazio T; Wind S; Greene EC
    Biochem Biophys Res Commun; 2012 Oct; 426(4):565-70. PubMed ID: 22967893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Molecule Imaging of DNA-Protein Interactions Using DNA Curtains.
    Crickard JB
    Methods Mol Biol; 2023; 2599():127-139. PubMed ID: 36427147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging.
    Fazio T; Visnapuu ML; Wind S; Greene EC
    Langmuir; 2008 Sep; 24(18):10524-31. PubMed ID: 18683960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions.
    Madariaga-Marcos J; Aldag P; Kauert DJ; Seidel R
    Methods Mol Biol; 2024; 2694():421-449. PubMed ID: 37824016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging.
    Gorman J; Fazio T; Wang F; Wind S; Greene EC
    Langmuir; 2010 Jan; 26(2):1372-9. PubMed ID: 19736980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA curtains for high-throughput single-molecule optical imaging.
    Greene EC; Wind S; Fazio T; Gorman J; Visnapuu ML
    Methods Enzymol; 2010; 472():293-315. PubMed ID: 20580969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap.
    Wright AJ; Richens JL; Bramble JP; Cathcart N; Kitaev V; O'Shea P; Hudson AJ
    Nanoscale; 2016 Sep; 8(36):16395-16404. PubMed ID: 27722713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for the covalent attachment of DNA to a surface for single-molecule studies.
    Schlingman DJ; Mack AH; Mochrie SG; Regan L
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):91-5. PubMed ID: 21130613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction to Optical Tweezers: Background, System Designs, and Applications.
    Malinowska AM; van Mameren J; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2024; 2694():3-28. PubMed ID: 37823997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers.
    Mameren Jv; Modesti M; Kanaar R; Wyman C; Wuite GJ; Peterman EJ
    Biophys J; 2006 Oct; 91(8):L78-80. PubMed ID: 16920830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Optical Tweezers Study of Protein-Membrane Interactions.
    Ma L; Ge J; Bian X; Zhang Y
    Methods Mol Biol; 2022; 2473():367-383. PubMed ID: 35819776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of single DNA molecules by using optically projected images.
    Lin YH; Chang CM; Lee GB
    Opt Express; 2009 Aug; 17(17):15318-29. PubMed ID: 19688010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-free click chemistry for attachment of biomolecules in magnetic tweezers.
    Eeftens JM; van der Torre J; Burnham DR; Dekker C
    BMC Biophys; 2015; 8():9. PubMed ID: 26413268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers.
    Berghuis BA; Köber M; van Laar T; Dekker NH
    Methods; 2016 Aug; 105():90-8. PubMed ID: 27038745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions.
    Gross P; Farge G; Peterman EJ; Wuite GJ
    Methods Enzymol; 2010; 475():427-53. PubMed ID: 20627167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.