These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22967893)

  • 21. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Enzymol; 2017; 582():137-169. PubMed ID: 28062033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
    Candelli A; Wuite GJ; Peterman EJ
    Phys Chem Chem Phys; 2011 Apr; 13(16):7263-72. PubMed ID: 21416086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct force measurements of specific and nonspecific protein interactions.
    Leckband DE; Schmitt FJ; Israelachvili JN; Knoll W
    Biochemistry; 1994 Apr; 33(15):4611-24. PubMed ID: 8161517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization.
    Dols-Perez A; Marin V; Amador GJ; Kieffer R; Tam D; Aubin-Tam ME
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33620-33627. PubMed ID: 31448892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organized arrays of individual DNA molecules tethered to supported lipid bilayers.
    Granéli A; Yeykal CC; Prasad TK; Greene EC
    Langmuir; 2006 Jan; 22(1):292-9. PubMed ID: 16378434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force-dependent persistence length of DNA-intercalator complexes measured in single molecule stretching experiments.
    Bazoni RF; Lima CH; Ramos EB; Rocha MS
    Soft Matter; 2015 Jun; 11(21):4306-14. PubMed ID: 25913936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the mechanics of the complete DNA transcription cycle in real-time using optical tweezers.
    Baumann CG; Cross SJ
    Methods Mol Biol; 2011; 778():175-91. PubMed ID: 21809207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions.
    Chua GNL; Liu S
    Annu Rev Biophys; 2024 Jul; 53(1):169-191. PubMed ID: 38237015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores.
    Galla L; Meyer AJ; Spiering A; Sischka A; Mayer M; Hall AR; Reimann P; Anselmetti D
    Nano Lett; 2014 Jul; 14(7):4176-82. PubMed ID: 24935198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Watching individual proteins acting on single molecules of DNA.
    Amitani I; Liu B; Dombrowski CC; Baskin RJ; Kowalczykowski SC
    Methods Enzymol; 2010; 472():261-91. PubMed ID: 20580968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Force Spectroscopy to Probe Coiled-Coil Assembly and Membrane Fusion.
    Witt H; Janshoff A
    Methods Mol Biol; 2019; 1860():145-159. PubMed ID: 30317502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers.
    Hao Y; Canavan C; Taylor SS; Maillard RA
    Sci Rep; 2017 Sep; 7(1):10843. PubMed ID: 28883488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.
    Moayed F; Mashaghi A; Tans SJ
    PLoS One; 2013; 8(1):e54440. PubMed ID: 23336001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying Optical Tweezers with TIRF Microscopy to Quantify Physical Interactions Between Organelles in the Plant Endomembrane System.
    Fletcher EM; Bateman BC; Botchway SW; Ward AD; Sparkes IA
    Curr Protoc; 2023 Aug; 3(8):e854. PubMed ID: 37555795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of Force-Dependent Release Rates of Cytoskeletal Motors.
    Can S; Yildiz A
    Methods Mol Biol; 2017; 1486():469-481. PubMed ID: 27844440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fixed DNA Molecule Arrays for High-Throughput Single DNA-Protein Interaction Studies.
    Tutkus M; Rakickas T; Kopu Stas A; Ivanovaitė ŠN; Venckus O; Navikas V; Zaremba M; Manakova E; Valiokas RN
    Langmuir; 2019 Apr; 35(17):5921-5930. PubMed ID: 30955328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.