BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 22967964)

  • 1. Host metabolomic responses in recurrent P. vivax malaria.
    Yakubu MN; Mwangi VI; Netto RLA; Alecrim MGC; Alves JRS; Almeida ACG; Santos GF; Lima GS; Machado LS; Koolen HHF; Guimarães TP; Chaves AR; Vaz BG; Monteiro WM; Costa FTM; Lacerda MVG; Gardinassi LG; de Melo GC
    Sci Rep; 2024 Mar; 14(1):7249. PubMed ID: 38538661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted metabolomic analysis in Parkinson's disease brain frontal cortex and putamen with relation to cognitive impairment.
    Kalecký K; Bottiglieri T
    NPJ Parkinsons Dis; 2023 Jun; 9(1):84. PubMed ID: 37270646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term monitoring for short/branched-chain acyl-CoA dehydrogenase deficiency: A single-center 4-year experience and open issues.
    Rossi A; Turturo M; Albano L; Fecarotta S; Barretta F; Crisci D; Gallo G; Perfetto R; Uomo F; Vallone F; Villani G; Strisciuglio P; Parenti G; Frisso G; Ruoppolo M
    Front Pediatr; 2022; 10():895921. PubMed ID: 36147814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolite Changes in the Aqueous Humor of Patients With Retinal Vein Occlusion Macular Edema: A Metabolomics Analysis.
    Xiong X; Chen X; Ma H; Zheng Z; Yang Y; Chen Z; Zhou Z; Pu J; Chen Q; Zheng M
    Front Cell Dev Biol; 2021; 9():762500. PubMed ID: 34993196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome.
    Depommier C; Everard A; Druart C; Maiter D; Thissen JP; Loumaye A; Hermans MP; Delzenne NM; de Vos WM; Cani PD
    Gut Microbes; 2021; 13(1):1994270. PubMed ID: 34812127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic profile overlap in prototypical autoimmune humoral disease: a comparison of myasthenia gravis and rheumatoid arthritis.
    Blackmore D; Li L; Wang N; Maksymowych W; Yacyshyn E; Siddiqi ZA
    Metabolomics; 2020 Jan; 16(1):10. PubMed ID: 31902059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical, Clinical, and Genetic Characteristics of Short/Branched Chain Acyl-CoA Dehydrogenase Deficiency in Chinese Patients by Newborn Screening.
    Lin Y; Gao H; Lin C; Chen Y; Zhou S; Lin W; Zheng Z; Li X; Li M; Fu Q
    Front Genet; 2019; 10():802. PubMed ID: 31555323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.
    Busanello EN; Lobato VG; Zanatta Â; Borges CG; Tonin AM; Viegas CM; Manfredini V; Ribeiro CA; Vargas CR; de Souza DO; Wajner M
    Cerebellum; 2014 Dec; 13(6):751-9. PubMed ID: 25172216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells.
    Liu Z; Li Q; Huang J; Liang Q; Yan Y; Lin H; Xiao W; Lin Y; Zhang S; Tan B; Luo G
    Proteome Sci; 2013 Jul; 11(1):32. PubMed ID: 23866759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical, biochemical, and molecular spectrum of short/branched-chain acyl-CoA dehydrogenase deficiency: two new cases and review of literature.
    Porta F; Chiesa N; Martinelli D; Spada M
    J Pediatr Endocrinol Metab; 2019 Feb; 32(2):101-108. PubMed ID: 30730842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models.
    Wyse ATS; Grings M; Wajner M; Leipnitz G
    Neurotox Res; 2019 Feb; 35(2):484-494. PubMed ID: 30515714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain.
    Knebel LA; Zanatta Â; Tonin AM; Grings M; Alvorcem Lde M; Wajner M; Leipnitz G
    Brain Res; 2012 Oct; 1478():74-82. PubMed ID: 22967964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex.
    Leipnitz G; Seminotti B; Haubrich J; Dalcin MB; Dalcin KB; Solano A; de Bortoli G; Rosa RB; Amaral AU; Dutra-Filho CS; Latini A; Wajner M
    J Neurosci Res; 2008 Feb; 86(3):683-93. PubMed ID: 17941049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain.
    Schuck PF; Ferreira GC; Moura AP; Busanello EN; Tonin AM; Dutra-Filho CS; Wajner M
    Neurochem Int; 2009 Jul; 54(8):519-25. PubMed ID: 19428797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-serine induces lipid and protein oxidative damage and decreases glutathione levels in brain cortex of rats.
    da Silva Lde B; Leipnitz G; Seminotti B; Fernandes CG; Beskow AP; Amaral AU; Wajner M
    Brain Res; 2009 Feb; 1256():34-42. PubMed ID: 19133242
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.