These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 22968061)
1. Lithium oxides precipitation in nonaqueous Li-air batteries. Hou J; Yang M; Ellis MW; Moore RB; Yi B Phys Chem Chem Phys; 2012 Oct; 14(39):13487-501. PubMed ID: 22968061 [TBL] [Abstract][Full Text] [Related]
2. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
3. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. Lu YC; Gasteiger HA; Shao-Horn Y J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022 [TBL] [Abstract][Full Text] [Related]
4. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. Li Q; Cao R; Cho J; Wu G Phys Chem Chem Phys; 2014 Jul; 16(27):13568-82. PubMed ID: 24715024 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889 [TBL] [Abstract][Full Text] [Related]
11. Li ion battery materials with core-shell nanostructures. Su L; Jing Y; Zhou Z Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116 [TBL] [Abstract][Full Text] [Related]
12. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165 [TBL] [Abstract][Full Text] [Related]
13. Rechargeable LI2O2 electrode for lithium batteries. Ogasawara T; Débart A; Holzapfel M; Novák P; Bruce PG J Am Chem Soc; 2006 Feb; 128(4):1390-3. PubMed ID: 16433559 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in zinc-air batteries. Li Y; Dai H Chem Soc Rev; 2014 Aug; 43(15):5257-75. PubMed ID: 24926965 [TBL] [Abstract][Full Text] [Related]
15. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Jiang J; Li Y; Liu J; Huang X Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657 [TBL] [Abstract][Full Text] [Related]
16. Battery technologies for large-scale stationary energy storage. Soloveichik GL Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629 [TBL] [Abstract][Full Text] [Related]
17. Metal hydrides for lithium-ion batteries. Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978 [TBL] [Abstract][Full Text] [Related]
18. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. Li W; Zheng H; Chu G; Luo F; Zheng J; Xiao D; Li X; Gu L; Li H; Wei X; Chen Q; Chen L Faraday Discuss; 2014; 176():109-24. PubMed ID: 25406865 [TBL] [Abstract][Full Text] [Related]
19. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
20. Lithium-Air Batteries: Air-Breathing Challenges and Perspective. Kang JH; Lee J; Jung JW; Park J; Jang T; Kim HS; Nam JS; Lim H; Yoon KR; Ryu WH; Kim ID; Byon HR ACS Nano; 2020 Nov; 14(11):14549-14578. PubMed ID: 33146514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]