These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22968264)

  • 1. Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management.
    Chen T; Wang Q; Chen R; Zhang B; Lin Y; Chen KP
    Appl Opt; 2012 Sep; 51(26):6282-9. PubMed ID: 22968264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed flow sensing using optical hot -wire grid.
    Chen T; Wang Q; Zhang B; Chen R; Chen KP
    Opt Express; 2012 Apr; 20(8):8240-9. PubMed ID: 22513536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributed high-temperature pressure sensing using air-hole microstructural fibers.
    Chen T; Wang Q; Chen R; Zhang B; Jewart C; Chen KP; Maklad M; Swinehart PR
    Opt Lett; 2012 Mar; 37(6):1064-6. PubMed ID: 22446226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry.
    Ye F; Chen T; Xu D; Chen KP; Qi B; Qian L
    Appl Opt; 2010 Sep; 49(26):4898-905. PubMed ID: 20830178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Fiber-Based Continuous Liquid Level Sensor Based on Rayleigh Backscattering.
    Chi X; Wang X; Ke X
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.
    Chiuchiolo A; Palmieri L; Consales M; Giordano M; Borriello A; Bajas H; Galtarossa A; Bajko M; Cusano A
    Opt Lett; 2015 Oct; 40(19):4424-7. PubMed ID: 26421547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.
    Yan A; Huang S; Li S; Chen R; Ohodnicki P; Buric M; Lee S; Li MJ; Chen KP
    Sci Rep; 2017 Aug; 7(1):9360. PubMed ID: 28839282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry.
    Zhou DP; Qin Z; Li W; Chen L; Bao X
    Opt Express; 2012 Jun; 20(12):13138-45. PubMed ID: 22714342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C.
    Bulot P; Bernard R; Cieslikiewicz-Bouet M; Laffont G; Douay M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber.
    Lu Z; Feng T; Li F; Yao XS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
    Ding Z; Wang C; Liu K; Jiang J; Yang D; Pan G; Pu Z; Liu T
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry.
    Roman M; Balogun D; Zhuang Y; Gerald RE; Bartlett L; O'Malley RJ; Huang J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of Scattering-Level Multiplexing (SLMux) in Distributed Fiber-Optic Backscatter Reflectometry Physical Sensors.
    Tosi D; Molardi C; Blanc W; Paixão T; Antunes P; Marques C
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.
    Lomperski S; Gerardi C; Lisowski D
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Characterization of Optical Fibers for Distributed Cryogenic Temperature Monitoring.
    Marcon L; Chiuchiolo A; Castaldo B; Bajas H; Galtarossa A; Bajko M; Palmieri L
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-level sensing method based on differential pulse-width pair Brillouin optical time-domain analysis and a self-heated high attenuation fiber.
    Zhang H; Cheng Y; Wu K; Yuan Z; Dong Y
    Appl Opt; 2020 Jan; 59(3):795-799. PubMed ID: 32225210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber Bragg grating cryogenic temperature sensors.
    Gupta S; Mizunami T; Yamao T; Shimomura T
    Appl Opt; 1996 Sep; 35(25):5202-5. PubMed ID: 21102958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.
    Miah K; Potter DK
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution and Large-Sensing-Range Liquid-Level Sensor Based on Optical Frequency Domain Reflectometry and No-Core Fiber.
    Yin G; Yang P; Xiao H; Wang Y; Zhang Z; Yan F; Zhu T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed optical strain sensing measurements down to cryogenic temperatures.
    Kandemir K; Guinchard M; Crouvizier M; Sacristan O; Mugnier S
    Appl Opt; 2023 Jun; 62(16):E125-E129. PubMed ID: 37706918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.