BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22968489)

  • 1. The nature of the different environmental sensitivity of symmetrical and unsymmetrical cyanine dyes: an experimental and theoretical study.
    Cao J; Wu T; Hu C; Liu T; Sun W; Fan J; Peng X
    Phys Chem Chem Phys; 2012 Oct; 14(39):13702-8. PubMed ID: 22968489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and nature of the different viscosity sensitivities of hemicyanine dyes with various heterocycles.
    Cao J; Hu C; Liu F; Sun W; Fan J; Song F; Sun S; Peng X
    Chemphyschem; 2013 Jun; 14(8):1601-8. PubMed ID: 23576465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and computational investigation of unsymmetrical cyanine dyes: understanding torsionally responsive fluorogenic dyes.
    Silva GL; Ediz V; Yaron D; Armitage BA
    J Am Chem Soc; 2007 May; 129(17):5710-8. PubMed ID: 17411048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turn-On DNA Probes.
    Uno K; Sasaki T; Sugimoto N; Ito H; Nishihara T; Hagihara S; Higashiyama T; Sasaki N; Sato Y; Itami K
    Chem Asian J; 2017 Jan; 12(2):233-238. PubMed ID: 27860278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments.
    Levitus M; Ranjit S
    Q Rev Biophys; 2011 Feb; 44(1):123-51. PubMed ID: 21108866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New cyanine-oligonucleotide conjugates: relationships between chemical structures and properties.
    Lartia R; Asseline U
    Chemistry; 2006 Mar; 12(8):2270-81. PubMed ID: 16419140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes.
    Luschtinetz F; Dosche C; Kumke MU
    Bioconjug Chem; 2009 Mar; 20(3):576-82. PubMed ID: 19226170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntheses and DNA-binding studies of a series of unsymmetrical cyanine dyes: structural influence on the degree of minor groove binding to natural DNA.
    Karlsson HJ; Bergqvist MH; Lincoln P; Westman G
    Bioorg Med Chem; 2004 May; 12(9):2369-84. PubMed ID: 15080934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groove-binding unsymmetrical cyanine dyes for staining of DNA: syntheses and characterization of the DNA-binding.
    Karlsson HJ; Eriksson M; Perzon E; Akerman B; Lincoln P; Westman G
    Nucleic Acids Res; 2003 Nov; 31(21):6227-34. PubMed ID: 14576310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-transfer-based wavelength-shifting DNA probes with "clickable" cyanine dyes.
    Holzhauser C; Rubner MM; Wagenknecht HA
    Photochem Photobiol Sci; 2013 May; 12(5):722-4. PubMed ID: 23314253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonradiative deactivation of the electronic excitation energy in cyanine dyes: influence of binding to DNA.
    Yarmoluk SM; Losytskyy MY; Yashchuk VM
    J Photochem Photobiol B; 2002 May; 67(1):57-63. PubMed ID: 12007468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye.
    Renikuntla BR; Rose HC; Eldo J; Waggoner AS; Armitage BA
    Org Lett; 2004 Mar; 6(6):909-12. PubMed ID: 15012062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysics of representative ketocyanine dyes: dependence on molecular structure.
    Kedia N; Sarkar A; Shannigrahi M; Bagchi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):79-84. PubMed ID: 21724453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast excited-state dynamics associated with the photoisomerization of a cyanine dye.
    Wang Z; Chu S; Wang S; Gong Q
    J Chem Phys; 2012 Oct; 137(16):164502. PubMed ID: 23126725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the higher lying excited states of cyanine dyes. An ultrafast fluorescence study.
    Guarin CA; Villabona-Monsalve JP; López-Arteaga R; Peon J
    J Phys Chem B; 2013 Jun; 117(24):7352-62. PubMed ID: 23697505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of 2-azaazulenium derivatives: unsymmetrical trimethine cyanine dyes bearing a 2-azaazulenium moiety as one of the terminal groups.
    Bricks J; Ryabitskii A; Kachkovskii A
    Chemistry; 2010 Aug; 16(29):8773-84. PubMed ID: 20572175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and spectroscopic and DNA-binding properties of fluorogenic acridine-containing cyanine dyes.
    Mahmood T; Paul A; Ladame S
    J Org Chem; 2010 Jan; 75(1):204-7. PubMed ID: 19954141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward quantitative prediction of molecular fluorescence quantum efficiency: role of duschinsky rotation.
    Peng Q; Yi Y; Shuai Z; Shao J
    J Am Chem Soc; 2007 Aug; 129(30):9333-9. PubMed ID: 17622142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Uversky VN; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2008 Dec; 112(49):15893-902. PubMed ID: 19367903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer.
    Peng X; Song F; Lu E; Wang Y; Zhou W; Fan J; Gao Y
    J Am Chem Soc; 2005 Mar; 127(12):4170-1. PubMed ID: 15783189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.