BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22968907)

  • 1. Formation and dissociation of phosphorylated peptide radical cations.
    Kong RP; Quan Q; Hao Q; Lai CK; Siu CK; Chu IK
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2094-101. PubMed ID: 22968907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation of alpha-radical cations of arginine-containing peptides.
    Laskin J; Yang Z; Ng CM; Chu IK
    J Am Soc Mass Spectrom; 2010 Apr; 21(4):511-21. PubMed ID: 20138543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic investigation of phosphate ester bond cleavages of glycylphosphoserinyltryptophan radical cations under low-energy collision-induced dissociation.
    Quan Q; Hao Q; Song T; Siu CK; Chu IK
    J Am Soc Mass Spectrom; 2013 Apr; 24(4):554-62. PubMed ID: 23516067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of the gas-phase phosphate group loss and rearrangement in phosphorylated peptides.
    Rožman M
    J Mass Spectrom; 2011 Sep; 46(9):949-55. PubMed ID: 21915960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-mediated formation of gas-phase amino acid radical cations.
    Barlow CK; Moran D; Radom L; McFadyen WD; O'Hair RA
    J Phys Chem A; 2006 Jul; 110(27):8304-15. PubMed ID: 16821814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides.
    Palumbo AM; Tepe JJ; Reid GE
    J Proteome Res; 2008 Feb; 7(2):771-9. PubMed ID: 18181561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation of singly, doubly, and triply charged hydrogen deficient peptide radical cations in infrared multiphoton dissociation and electron induced dissociation.
    Kalli A; Hess S
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):244-63. PubMed ID: 22101468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular hydrogen atom migration along the backbone of cationic and neutral radical tripeptides and subsequent radical-induced dissociations.
    Zhao J; Song T; Xu M; Quan Q; Siu KW; Hopkinson AC; Chu IK
    Phys Chem Chem Phys; 2012 Jun; 14(24):8723-31. PubMed ID: 22614151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation of peptide radical cations containing a tyrosine or tryptophan residue: structural features that favor formation of [x(n-1) + H]˙⁺ and [z(n-1) + H]˙⁺ ions.
    Mädler S; Lau JK; Williams D; Wang Y; Saminathan IS; Zhao J; Siu KW; Hopkinson AC
    J Phys Chem B; 2014 Jun; 118(23):6123-33. PubMed ID: 24823970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes.
    Chu IK; Laskin J
    Eur J Mass Spectrom (Chichester); 2011; 17(6):543-56. PubMed ID: 22274945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of anionic peptide radicals in vacuo.
    Lam CN; Chu IK
    J Am Soc Mass Spectrom; 2006 Sep; 17(9):1249-57. PubMed ID: 16809047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron capture dissociation of hydrogen-deficient peptide radical cations.
    Kalli A; Hess S
    J Am Soc Mass Spectrom; 2012 Oct; 23(10):1729-40. PubMed ID: 22855421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide derivatization as a strategy to form fixed-charge peptide radicals.
    Karnezis A; Barlow CK; O'Hair RA; McFadyen WD
    Rapid Commun Mass Spectrom; 2006; 20(19):2865-70. PubMed ID: 16941727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual fragmentation of Pro-Ser/Thr-containing peptides detected in collision-induced dissociation spectra.
    Medzihradszky KF; Trinidad JC
    J Am Soc Mass Spectrom; 2012 Apr; 23(4):602-7. PubMed ID: 21952759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of cationic peptide radicals by gas-phase redox reactions with trivalent chromium, manganese, iron, and cobalt complexes.
    Barlow CK; McFadyen WD; O'Hair RA
    J Am Chem Soc; 2005 Apr; 127(16):6109-15. PubMed ID: 15839712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can radical cations of the constituents of nucleic acids be formed in the gas phase using ternary transition metal complexes?
    Wee S; O'Hair RA; McFadyen WD
    Rapid Commun Mass Spectrom; 2005; 19(13):1797-805. PubMed ID: 15945020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of peptide radical dications via low-energy collision-induced dissociation of [CuII(terpy)(M + H)].3+ .
    Chu IK; Lam CN
    J Am Soc Mass Spectrom; 2005 Nov; 16(11):1795-804. PubMed ID: 16198598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.
    Song T; Hao Q; Law CH; Siu CK; Chu IK
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):264-73. PubMed ID: 22135037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic examination of Cβ-Cγ bond cleavages of tryptophan residues during dissociations of molecular peptide radical cations.
    Song T; Ma CY; Chu IK; Siu CK; Laskin J
    J Phys Chem A; 2013 Feb; 117(6):1059-68. PubMed ID: 22697598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.