These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22968993)

  • 1. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores.
    Xie S; Lu N; Xie Z; Wang J; Kim MJ; Xia Y
    Angew Chem Int Ed Engl; 2012 Oct; 51(41):10266-70. PubMed ID: 22968993
    [No Abstract]   [Full Text] [Related]  

  • 2. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size.
    Xiong Y; Chen J; Wiley B; Xia Y; Aloni S; Yin Y
    J Am Chem Soc; 2005 May; 127(20):7332-3. PubMed ID: 15898780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced shape stability of Pd-Rh core-frame nanocubes at elevated temperature: in situ heating transmission electron microscopy.
    Lu N; Wang J; Xie S; Xia Y; Kim MJ
    Chem Commun (Camb); 2013 Dec; 49(100):11806-8. PubMed ID: 24178397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: the roles of capping agent and surface diffusion.
    Xie S; Peng HC; Lu N; Wang J; Kim MJ; Xie Z; Xia Y
    J Am Chem Soc; 2013 Nov; 135(44):16658-67. PubMed ID: 24116876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial anisotropic growth of rhodium nanoparticles.
    Hoefelmeyer JD; Niesz K; Somorjai GA; Tilley TD
    Nano Lett; 2005 Mar; 5(3):435-8. PubMed ID: 15755090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral dendrimer encapsulated Pd and Rh nanoparticles.
    Pittelkow M; Brock-Nannestad T; Moth-Poulsen K; Christensen JB
    Chem Commun (Camb); 2008 May; (20):2358-60. PubMed ID: 18473069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes.
    Trincado M; Grützmacher H; Vizza F; Bianchini C
    Chemistry; 2010 Mar; 16(9):2751-7. PubMed ID: 20082396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth.
    Li J; Zheng Y; Zeng J; Xia Y
    Chemistry; 2012 Jun; 18(26):8150-6. PubMed ID: 22615213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic hydrodechlorination of 2,4-dichlorophenol on Pd/Rh/C catalysts.
    Pozan GS; Boz I
    J Hazard Mater; 2006 Aug; 136(3):917-21. PubMed ID: 16507332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry of ethylene glycol on a Rh(100) single-crystal surface.
    Jansen MM; Nieuwenhuys BE; Niemantsverdriet H
    ChemSusChem; 2009; 2(9):883-6. PubMed ID: 19722238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled synthesis of bimetallic Pd-Rh nanoframes and nanoboxes with high catalytic performances.
    Ye W; Kou S; Guo X; Xie F; Sun H; Lu H; Yang J
    Nanoscale; 2015 Jun; 7(21):9558-62. PubMed ID: 25947355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals.
    Lim B; Xiong Y; Xia Y
    Angew Chem Int Ed Engl; 2007; 46(48):9279-82. PubMed ID: 17966966
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics, facet-selective capping, and surface diffusion.
    Xie S; Zhang H; Lu N; Jin M; Wang J; Kim MJ; Xie Z; Xia Y
    Nano Lett; 2013; 13(12):6262-8. PubMed ID: 24215542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth.
    Lim B; Kobayashi H; Yu T; Wang J; Kim MJ; Li ZY; Rycenga M; Xia Y
    J Am Chem Soc; 2010 Mar; 132(8):2506-7. PubMed ID: 20136138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.
    Zhang H; Jin M; Wang J; Li W; Camargo PH; Kim MJ; Yang D; Xie Z; Xia Y
    J Am Chem Soc; 2011 Apr; 133(15):6078-89. PubMed ID: 21438596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities.
    Zhang J; Zhang L; Xie S; Kuang Q; Han X; Xie Z; Zheng L
    Chemistry; 2011 Aug; 17(36):9915-9. PubMed ID: 21805511
    [No Abstract]   [Full Text] [Related]  

  • 18. Excitation function and yield for the
    Manenti S; Alí Santoro MDC; Cotogno G; Duchemin C; Haddad F; Holzwarth U; Groppi F
    Nucl Med Biol; 2017 Jun; 49():30-37. PubMed ID: 28292697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study.
    Toshima N; Kanemaru M; Shiraishi Y; Koga Y
    J Phys Chem B; 2005 Sep; 109(34):16326-31. PubMed ID: 16853075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions.
    Zhang ZC; Zhang X; Yu QY; Liu ZC; Xu CM; Gao JS; Zhuang J; Wang X
    Chemistry; 2012 Feb; 18(9):2639-45. PubMed ID: 22282407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.