BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 22969082)

  • 1. Lipid-dependent generation of dual topology for a membrane protein.
    Bogdanov M; Dowhan W
    J Biol Chem; 2012 Nov; 287(45):37939-48. PubMed ID: 22969082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli.
    Bogdanov M; Heacock P; Guan Z; Dowhan W
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15057-62. PubMed ID: 20696931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein.
    Vitrac H; Bogdanov M; Dowhan W
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9338-43. PubMed ID: 23690595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology.
    Bogdanov M; Xie J; Heacock P; Dowhan W
    J Cell Biol; 2008 Sep; 182(5):925-35. PubMed ID: 18779371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease.
    Xie J; Bogdanov M; Heacock P; Dowhan W
    J Biol Chem; 2006 Jul; 281(28):19172-8. PubMed ID: 16698795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli.
    Vitrac H; Bogdanov M; Dowhan W
    J Biol Chem; 2013 Feb; 288(8):5873-85. PubMed ID: 23322771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition.
    Zhang W; Bogdanov M; Pi J; Pittard AJ; Dowhan W
    J Biol Chem; 2003 Dec; 278(50):50128-35. PubMed ID: 14525982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Functional Adaptability of Sucrose and Lactose Permeases from
    Vitrac H; Mallampalli VKPS; Azinas S; Dowhan W
    Biochemistry; 2020 May; 59(19):1854-1868. PubMed ID: 32363862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles.
    Vitrac H; Mallampalli VKPS; Bogdanov M; Dowhan W
    Sci Rep; 2019 Aug; 9(1):11338. PubMed ID: 31383935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli.
    Zhang W; Campbell HA; King SC; Dowhan W
    J Biol Chem; 2005 Jul; 280(28):26032-8. PubMed ID: 15890647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition.
    Bogdanov M; Heacock PN; Dowhan W
    EMBO J; 2002 May; 21(9):2107-16. PubMed ID: 11980707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
    Martens C; Shekhar M; Borysik AJ; Lau AM; Reading E; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2018 Oct; 9(1):4151. PubMed ID: 30297844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observing a lipid-dependent alteration in single lactose permeases.
    Serdiuk T; Sugihara J; Mari SA; Kaback HR; Müller DJ
    Structure; 2015 Apr; 23(4):754-61. PubMed ID: 25800555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling FRET to investigate the selectivity of lactose permease of Escherichia coli for lipids.
    Suárez-Germà C; Hernández-Borrell J; Prieto M; Loura LM
    Mol Membr Biol; 2014 Jun; 31(4):120-30. PubMed ID: 24826799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane.
    Nie Y; Kaback HR
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9903-8. PubMed ID: 20457922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating phospholipids for crystallization of a membrane transport protein.
    Guan L; Smirnova IN; Verner G; Nagamori S; Kaback HR
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1723-6. PubMed ID: 16446422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipids and topological rules governing membrane protein assembly.
    Bogdanov M; Dowhan W; Vitrac H
    Biochim Biophys Acta; 2014 Aug; 1843(8):1475-88. PubMed ID: 24341994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli.
    Picas L; Montero MT; Morros A; Vázquez-Ibar JL; Hernández-Borrell J
    Biochim Biophys Acta; 2010 Feb; 1798(2):291-6. PubMed ID: 19595667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease.
    Vadyvaloo V; Smirnova IN; Kasho VN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1051-9. PubMed ID: 16574149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. May the force be with you: unfolding lipid-protein interactions by single-molecule force spectroscopy.
    Dowhan W; Vitrac H; Bogdanov M
    Structure; 2015 Apr; 23(4):612-4. PubMed ID: 25862933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.