These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22969328)

  • 1. Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit.
    Jeong H; Cho NH; Jung U; Lee C; Kim JY; Kim J
    Sensors (Basel); 2012; 12(6):6920-9. PubMed ID: 22969328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K; Kang JU
    Opt Express; 2010 May; 18(11):11772-84. PubMed ID: 20589038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    Opt Express; 2014 Jun; 22(12):14871-84. PubMed ID: 24977582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units.
    Sylwestrzak M; Szlag D; Szkulmowski M; Gorczynska I; Bukowska D; Wojtkowski M; Targowski P
    J Biomed Opt; 2012 Oct; 17(10):100502. PubMed ID: 23042477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units.
    Huang Y; Liu X; Kang JU
    Biomed Opt Express; 2012 Sep; 3(9):2162-74. PubMed ID: 23024910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q; Li Y; Xu Q; Zhao J; Wang L; Gao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan; 37(1):1-5. PubMed ID: 23668032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S; Bradu A; Podoleanu AG
    J Biomed Opt; 2010; 15(3):030511. PubMed ID: 20614994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography.
    Ren H; Sun T; MacDonald DJ; Cobb MJ; Li X
    Opt Lett; 2006 Apr; 31(7):927-9. PubMed ID: 16599214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit.
    Watanabe Y
    J Biomed Opt; 2012 May; 17(5):050503. PubMed ID: 22612118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.
    Watanabe Y; Takahashi Y; Numazawa H
    J Biomed Opt; 2014 Feb; 19(2):021105. PubMed ID: 23846119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.
    Xu J; Wong K; Jian Y; Sarunic MV
    J Biomed Opt; 2014 Feb; 19(2):026001. PubMed ID: 24503636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering.
    Jian Y; Wong K; Sarunic MV
    J Biomed Opt; 2013 Feb; 18(2):26002. PubMed ID: 23377003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm.
    Wang Y; Oh CM; Oliveira MC; Islam MS; Ortega A; Park BH
    Opt Express; 2012 Jul; 20(14):14797-813. PubMed ID: 22772175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clutter rejection filters for optical Doppler tomography.
    Ren H; Li X
    Opt Express; 2006 Jun; 14(13):6103-12. PubMed ID: 19516783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.
    Tankam P; Santhanam AP; Lee KS; Won J; Canavesi C; Rolland JP
    J Biomed Opt; 2014 Jul; 19(7):71410. PubMed ID: 24695868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography.
    Zhang T; Zhou J; Carney PR; Jiang H
    J Neurosci Methods; 2015 Jan; 240():28-36. PubMed ID: 25445250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPU-accelerated Double-stage Delay-multiply-and-sum Algorithm for Fast Photoacoustic Tomography Using LED Excitation and Linear Arrays.
    Miri Rostami SR; Mozaffarzadeh M; Ghaffari-Miab M; Hariri A; Jokerst J
    Ultrason Imaging; 2019 Sep; 41(5):301-316. PubMed ID: 31322057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.