These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22969387)

  • 1. Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction.
    Aguilera T; Lozano J; Paredes JA; Alvarez FJ; Suárez JI
    Sensors (Basel); 2012; 12(6):8055-72. PubMed ID: 22969387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets.
    Zhang H; Shao W; Qiu S; Wang J; Wei Z
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling.
    Summerson V; Gonzalez Viejo C; Pang A; Torrico DD; Fuentes S
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy.
    Zaukuu JZ; Soós J; Bodor Z; Felföldi J; Magyar I; Kovacs Z
    J Food Sci; 2019 Dec; 84(12):3437-3444. PubMed ID: 31762045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Sparkling Wine Style and Quality by MIR Spectroscopy.
    Culbert J; Cozzolino D; Ristic R; Wilkinson K
    Molecules; 2015 May; 20(5):8341-56. PubMed ID: 26007169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Combination of near infrared spectroscopy and electronic nose for alcohol quantification during the red wine fermentation].
    Zhang SM; Yang Y; Ni YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):2997-3001. PubMed ID: 23387165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Discrimination of varieties of dry red wines based on independent component analysis and BP neural network].
    Wu GF; Jiang YH; Wang YY; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1268-71. PubMed ID: 19650468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards reliable estimation of an "electronic tongue" predictive ability from PLS regression models in wine analysis.
    Kirsanov D; Mednova O; Vietoris V; Kilmartin PA; Legin A
    Talanta; 2012 Feb; 90():109-16. PubMed ID: 22340124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact and low cost electronic nose for aroma detection.
    Macías Macías M; Agudo JE; García Manso A; García Orellana CJ; González Velasco HM; Gallardo Caballero R
    Sensors (Basel); 2013 Apr; 13(5):5528-41. PubMed ID: 23698265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms.
    Hu L; Yin C; Ma S; Liu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():574-581. PubMed ID: 30075438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue.
    Wei Z; Wang J; Ye L
    Biosens Bioelectron; 2011 Aug; 26(12):4767-73. PubMed ID: 21683570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks.
    Hosu A; Cristea VM; Cimpoiu C
    Food Chem; 2014 May; 150():113-8. PubMed ID: 24360427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation.
    Tian H; Li F; Qin L; Yu H; Ma X
    J Food Sci; 2014 Nov; 79(11):S2346-53. PubMed ID: 25311825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of agarwood oil using an electronic nose.
    Hidayat W; Shakaff AY; Ahmad MN; Adom AH
    Sensors (Basel); 2010; 10(5):4675-85. PubMed ID: 22399899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved algorithms for the classification of rough rice using a bionic electronic nose based on PCA and the Wilks distribution.
    Xu S; Zhou Z; Lu H; Luo X; Lan Y
    Sensors (Basel); 2014 Mar; 14(3):5486-501. PubMed ID: 24651725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Argentinean Sauvignon blanc wines by UV spectroscopy and chemometric methods.
    Azcarate SM; Cantarelli MÁ; Pellerano RG; Marchevsky EJ; Camiña JM
    J Food Sci; 2013 Mar; 78(3):C432-6. PubMed ID: 23425149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines.
    Malacarne M; Bergamo L; Bertoldi D; Nicolini G; Larcher R
    Talanta; 2013 Dec; 117():505-10. PubMed ID: 24209373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator.
    Garcia-Hernandez C; Garcia-Cabezon C; Martin-Pedrosa F; Rodriguez-Mendez ML
    Food Chem; 2019 Aug; 289():751-756. PubMed ID: 30955676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct authentication and composition quantitation of red wines based on Tri-step infrared spectroscopy and multivariate data fusion.
    Wang S; Hu XZ; Liu YY; Tao NP; Lu Y; Wang XC; Lam W; Lin L; Xu CH
    Food Chem; 2022 Mar; 372():131259. PubMed ID: 34627087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic Analysis and Theoretic Design for Chinese Commercial Wines' Authentication.
    Li SY; Zhu BQ; Reeves MJ; Duan CQ
    J Food Sci; 2018 Jan; 83(1):30-38. PubMed ID: 29210459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.