These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 22970195)
1. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis. Ayer A; Fellermeier S; Fife C; Li SS; Smits G; Meyer AJ; Dawes IW; Perrone GG PLoS One; 2012; 7(9):e44278. PubMed ID: 22970195 [TBL] [Abstract][Full Text] [Related]
2. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae. Ayer A; Sanwald J; Pillay BA; Meyer AJ; Perrone GG; Dawes IW PLoS One; 2013; 8(6):e65240. PubMed ID: 23762325 [TBL] [Abstract][Full Text] [Related]
3. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. Drakulic T; Temple MD; Guido R; Jarolim S; Breitenbach M; Attfield PV; Dawes IW FEMS Yeast Res; 2005 Dec; 5(12):1215-28. PubMed ID: 16087409 [TBL] [Abstract][Full Text] [Related]
4. The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. Elbaz-Alon Y; Morgan B; Clancy A; Amoako TN; Zalckvar E; Dick TP; Schwappach B; Schuldiner M FEMS Yeast Res; 2014 Nov; 14(7):1055-67. PubMed ID: 25130273 [TBL] [Abstract][Full Text] [Related]
5. Temporal profiling of redox-dependent heterogeneity in single cells. Radzinski M; Fassler R; Yogev O; Breuer W; Shai N; Gutin J; Ilyas S; Geffen Y; Tsytkin-Kirschenzweig S; Nahmias Y; Ravid T; Friedman N; Schuldiner M; Reichmann D Elife; 2018 Jun; 7():. PubMed ID: 29869985 [TBL] [Abstract][Full Text] [Related]
6. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Dardalhon M; Kumar C; Iraqui I; Vernis L; Kienda G; Banach-Latapy A; He T; Chanet R; Faye G; Outten CE; Huang ME Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2254-65. PubMed ID: 22561702 [TBL] [Abstract][Full Text] [Related]
7. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447 [TBL] [Abstract][Full Text] [Related]
8. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL Elife; 2020 Jan; 9():. PubMed ID: 32003744 [TBL] [Abstract][Full Text] [Related]
9. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Schwarzländer M; Fricker MD; Sweetlove LJ Biochim Biophys Acta; 2009 May; 1787(5):468-75. PubMed ID: 19366606 [TBL] [Abstract][Full Text] [Related]
10. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Aller I; Rouhier N; Meyer AJ Front Plant Sci; 2013; 4():506. PubMed ID: 24379821 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes. Lismont C; Walton PA; Fransen M Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459 [TBL] [Abstract][Full Text] [Related]
12. Subcellular redox responses reveal different Cu-dependent antioxidant defenses between mitochondria and cytosol. Zhang Y; Wen MH; Qin G; Cai C; Chen TY Metallomics; 2022 Nov; 14(11):. PubMed ID: 36367501 [TBL] [Abstract][Full Text] [Related]
13. A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP Yadav S; Mody TA; Sharma A; Bachhawat AK G3 (Bethesda); 2020 Jan; 10(1):371-378. PubMed ID: 31757928 [TBL] [Abstract][Full Text] [Related]
14. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions. Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739 [TBL] [Abstract][Full Text] [Related]
16. Dynamic imaging of cellular pH and redox homeostasis with a genetically encoded dual-functional biosensor, pHaROS, in yeast. Zhao H; Zhang Y; Pan M; Song Y; Bai L; Miao Y; Huang Y; Zhu X; Song CP J Biol Chem; 2019 Oct; 294(43):15768-15780. PubMed ID: 31488545 [TBL] [Abstract][Full Text] [Related]
17. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699 [TBL] [Abstract][Full Text] [Related]
19. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Morgan B; Sobotta MC; Dick TP Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034 [TBL] [Abstract][Full Text] [Related]
20. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. Kojer K; Bien M; Gangel H; Morgan B; Dick TP; Riemer J EMBO J; 2012 Jun; 31(14):3169-82. PubMed ID: 22705944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]