These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells. Seo MS; Park SB; Kang KS Cell Transplant; 2012; 21(7):1493-502. PubMed ID: 22732242 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Bagher Z; Azami M; Ebrahimi-Barough S; Mirzadeh H; Solouk A; Soleimani M; Ai J; Nourani MR; Joghataei MT Mol Neurobiol; 2016 May; 53(4):2397-408. PubMed ID: 26001761 [TBL] [Abstract][Full Text] [Related]
5. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Peng J; Wang Y; Zhang L; Zhao B; Zhao Z; Chen J; Guo Q; Liu S; Sui X; Xu W; Lu S Brain Res Bull; 2011 Feb; 84(3):235-43. PubMed ID: 21194558 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Lin HY; Liou CW; Chen SD; Hsu TY; Chuang JH; Wang PW; Huang ST; Tiao MM; Chen JB; Lin TK; Chuang YC Mitochondrion; 2015 May; 22():31-44. PubMed ID: 25746175 [TBL] [Abstract][Full Text] [Related]
7. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. Bagher Z; Ebrahimi-Barough S; Azami M; Safa M; Joghataei MT J Biomed Mater Res A; 2016 Jan; 104(1):218-26. PubMed ID: 26265047 [TBL] [Abstract][Full Text] [Related]
8. Wharton's Jelly Derived Mesenchymal Stem Cells: Comparing Human and Horse. Merlo B; Teti G; Mazzotti E; IngrĂ L; Salvatore V; Buzzi M; Cerqueni G; Dicarlo M; Lanci A; Castagnetti C; Iacono E Stem Cell Rev Rep; 2018 Aug; 14(4):574-584. PubMed ID: 29508214 [TBL] [Abstract][Full Text] [Related]
9. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Jadalannagari S; Aljitawi OS Tissue Eng Part B Rev; 2015 Jun; 21(3):314-22. PubMed ID: 25517045 [TBL] [Abstract][Full Text] [Related]
10. Production of endothelial progenitor cells obtained from human Wharton's jelly using different culture conditions. Zayed SA; Gaafar TM; Samy RM; Sabry D; Nasr AS; Maksoud FA Biotech Histochem; 2016 Nov; 91(8):532-539. PubMed ID: 27849398 [TBL] [Abstract][Full Text] [Related]
11. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919 [TBL] [Abstract][Full Text] [Related]
12. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells. Bagher Z; Ebrahimi-Barough S; Azami M; Mirzadeh H; Soleimani M; Ai J; Nourani MR; Joghataei MT In Vitro Cell Dev Biol Anim; 2015 Oct; 51(9):987-94. PubMed ID: 26148883 [TBL] [Abstract][Full Text] [Related]
13. Improvement in Therapeutic Ability of Wharton's Jelly Derived Mesenchymal Stem Cells with Vitamin E in Breast Cancer. Wajid N; Azam M; Khalid S; Ali F; Qazi A; Qazi MH J Coll Physicians Surg Pak; 2017 Dec; 27(12):754-758. PubMed ID: 29185401 [TBL] [Abstract][Full Text] [Related]
14. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix. Hendijani F; Sadeghi-Aliabadi H; Haghjooy Javanmard S Cell Tissue Bank; 2014 Dec; 15(4):555-65. PubMed ID: 24532125 [TBL] [Abstract][Full Text] [Related]
15. A xeno-free culture method that enhances Wharton's jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures. Julavijitphong S; Wichitwiengrat S; Tirawanchai N; Ruangvutilert P; Vantanasiri C; Phermthai T Cytotherapy; 2014 May; 16(5):683-91. PubMed ID: 24119645 [TBL] [Abstract][Full Text] [Related]
16. Proliferation of Peripheral Blood Lymphocytes and Mesenchymal Stromal Cells Derived from Wharton's Jelly in Mixed and Membrane-Separated Cultures. Poltavtsev AM; Poltavtseva RA; Yushina MN; Pavlovich SV; Svirshchevskaya EV Bull Exp Biol Med; 2017 Aug; 163(4):542-549. PubMed ID: 28853086 [TBL] [Abstract][Full Text] [Related]
17. Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture. Vakhrushev IV; Basok YB; Baskaev KK; Novikova VD; Leonov GE; Grigoriev AM; Belova AD; Kirsanova LA; Lupatov AY; Burunova VV; Kovalev AV; Makarevich PI; Sevastianov VI; Yarygin KN Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891883 [TBL] [Abstract][Full Text] [Related]
18. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton's jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cardoso TC; Okamura LH; Baptistella JC; Gameiro R; Ferreira HL; Marinho M; Flores EF Cell Tissue Res; 2017 Feb; 367(2):243-256. PubMed ID: 27677269 [TBL] [Abstract][Full Text] [Related]
19. Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering. Zhang L; Zhao YH; Guan Z; Ye JS; de Isla N; Stoltz JF Biomed Mater Eng; 2015; 25(1 Suppl):137-43. PubMed ID: 25538064 [TBL] [Abstract][Full Text] [Related]