BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22970819)

  • 1. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.
    Lopalco P; Angelini R; Lobasso S; Köcher S; Thompson M; Müller V; Corcelli A
    Environ Microbiol; 2013 Apr; 15(4):1078-87. PubMed ID: 22970819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of polar membrane lipids of the extremely halophilic bacterium Salinibacter ruber and possible role of cardiolipin.
    Lattanzio VM; Baronio M; Oren A; Russell NJ; Corcelli A
    Biochim Biophys Acta; 2009 Jan; 1791(1):25-31. PubMed ID: 18996223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus.
    Saum SH; Pfeiffer F; Palm P; Rampp M; Schuster SC; Müller V; Oesterhelt D
    Environ Microbiol; 2013 May; 15(5):1619-33. PubMed ID: 22583374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131
    Kato S; Tobe H; Matsubara H; Sawada M; Sasaki Y; Fukiya S; Morita N; Yokota A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Mar; 1864(3):403-412. PubMed ID: 29883797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering archaeal glycolipids of an extremely halophilic archaeon of the genus Halobellus by MALDI-TOF/MS.
    Lobasso S; Pérez-Davó A; Vitale R; Sánchez MM; Corcelli A
    Chem Phys Lipids; 2015 Feb; 186():1-8. PubMed ID: 25447292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Lipid Remodeling in Response to Salinity.
    Guo Q; Liu L; Barkla BJ
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of phosphatidic acid, ceramide, and diglyceride on radiolysis of lipids: identification by MALDI-TOF mass spectrometry.
    Shadyro O; Yurkova I; Kisel M; Brede O; Arnhold J
    Free Radic Biol Med; 2004 Jun; 36(12):1612-24. PubMed ID: 15182861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids.
    Fischer W; Leopold K
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():653-62. PubMed ID: 10408878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular lipids of Romboutsia.
    Guan Z; Chen L; Gerritsen J; Smidt H; Goldfine H
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt A):1076-1082. PubMed ID: 27317428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acyl chain composition determines cardiolipin clustering induced by mitochondrial creatine kinase binding to monolayers.
    Maniti O; Cheniour M; Lecompte MF; Marcillat O; Buchet R; Vial C; Granjon T
    Biochim Biophys Acta; 2011 Apr; 1808(4):1129-39. PubMed ID: 21256109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles.
    Angelini R; Corral P; Lopalco P; Ventosa A; Corcelli A
    Biochim Biophys Acta; 2012 May; 1818(5):1365-73. PubMed ID: 22366205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of anionic lipid in bacterial membranes.
    Card GL; Trautman JK
    Biochim Biophys Acta; 1990 Oct; 1047(1):77-82. PubMed ID: 2248965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the composition of membrane phospholipids during the cell cycle of Escherichia coli.
    Mozharov AD; Shchipakin VN; Fishov IL; Evtodienko YuV
    FEBS Lett; 1985 Jul; 186(1):103-6. PubMed ID: 3891405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid requirement of the branched-chain amino acid transport system of Streptococcus cremoris.
    Driessen AJ; Zheng T; In't Veld G; Op den Kamp JA; Konings WN
    Biochemistry; 1988 Feb; 27(3):865-72. PubMed ID: 3284574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sulfoquinovosyl diacylglycerol as a major polar lipid in Marinococcus halophilus and Salinicoccus hispanicus and substitution with phosphatidylglycerol.
    Sprott GD; Bakouche L; Rajagopal K
    Can J Microbiol; 2006 Mar; 52(3):209-19. PubMed ID: 16604117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transphosphatidylation activity in Clostridium butyricum. Evidence for a secondary pathway by which membrane phospholipids may be synthesized and modified.
    Walton PA; Goldfine H
    J Biol Chem; 1987 Jul; 262(21):10355-61. PubMed ID: 3611063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi.
    Lobasso S; Lopalco P; Mascolo G; Corcelli A
    Archaea; 2008 Dec; 2(3):177-83. PubMed ID: 19054744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: pheasant spermatozoa as one selected example.
    Teuber K; Schiller J; Jakop U; Lüpold S; Orledge JM; Blount JD; Royle NJ; Hoodless A; Müller K
    Anim Reprod Sci; 2011 Feb; 123(3-4):270-8. PubMed ID: 21295419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.
    Turk M; Méjanelle L; Sentjurc M; Grimalt JO; Gunde-Cimerman N; Plemenitas A
    Extremophiles; 2004 Feb; 8(1):53-61. PubMed ID: 15064990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.