BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22970894)

  • 1. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods.
    Cross S; Ortuso F; Baroni M; Costa G; Distinto S; Moraca F; Alcaro S; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2599-608. PubMed ID: 22970854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D.
    Richmond NJ; Abrams CA; Wolohan PR; Abrahamian E; Willett P; Clark RD
    J Comput Aided Mol Des; 2006 Sep; 20(9):567-87. PubMed ID: 17051338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR.
    Toba S; Srinivasan J; Maynard AJ; Sutter J
    J Chem Inf Model; 2006; 46(2):728-35. PubMed ID: 16563003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.
    Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS
    J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiobjective optimization of pharmacophore hypotheses: bias toward low-energy conformations.
    Gardiner EJ; Cosgrove DA; Taylor R; Gillet VJ
    J Chem Inf Model; 2009 Dec; 49(12):2761-73. PubMed ID: 19908873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI's in their binding pockets.
    Daeyaert F; de Jonge M; Heeres J; Koymans L; Lewi P; Vinkers MH; Janssen PA
    Proteins; 2004 Feb; 54(3):526-33. PubMed ID: 14748000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures.
    Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF
    J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints.
    Renner S; Derksen S; Radestock S; Mörchen F
    J Chem Inf Model; 2008 Feb; 48(2):319-32. PubMed ID: 18211051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a MIP-based alignment and docking in computer-aided drug design.
    Barbany M; Gutiérrez-de-Terán H; Sanz F; Villà-Freixa J
    Proteins; 2004 Aug; 56(3):585-94. PubMed ID: 15229890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2.
    Zou J; Xie HZ; Yang SY; Chen JJ; Ren JX; Wei YQ
    J Mol Graph Model; 2008 Nov; 27(4):430-8. PubMed ID: 18786843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining structure-based drug design and pharmacophores.
    Griffith R; Luu TT; Garner J; Keller PA
    J Mol Graph Model; 2005 Apr; 23(5):439-46. PubMed ID: 15781186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharao: pharmacophore alignment and optimization.
    Taminau J; Thijs G; De Winter H
    J Mol Graph Model; 2008 Sep; 27(2):161-9. PubMed ID: 18485770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP.
    Patel Y; Gillet VJ; Bravi G; Leach AR
    J Comput Aided Mol Des; 2002; 16(8-9):653-81. PubMed ID: 12602956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is it possible to increase hit rates in structure-based virtual screening by pharmacophore filtering? An investigation of the advantages and pitfalls of post-filtering.
    Muthas D; Sabnis YA; Lundborg M; Karlén A
    J Mol Graph Model; 2008 Jun; 26(8):1237-51. PubMed ID: 18203638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated generation of MCSS-derived pharmacophoric DOCK site points for searching multiconformation databases.
    Joseph-McCarthy D; Alvarez JC
    Proteins; 2003 May; 51(2):189-202. PubMed ID: 12660988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications.
    Tervo AJ; Rönkkö T; Nyrönen TH; Poso A
    J Med Chem; 2005 Jun; 48(12):4076-86. PubMed ID: 15943481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional quantitative structure-activity relationship analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach.
    Parenti MD; Pacchioni S; Ferrari AM; Rastelli G
    J Med Chem; 2004 Aug; 47(17):4258-67. PubMed ID: 15293997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.