BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22970901)

  • 1. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces.
    Canchi DR; Jayasimha P; Rau DC; Makhatadze GI; Garcia AE
    J Phys Chem B; 2012 Oct; 116(40):12095-104. PubMed ID: 22970901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosolvent effects on protein stability.
    Canchi DR; García AE
    Annu Rev Phys Chem; 2013; 64():273-93. PubMed ID: 23298246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylamine
    Liao YT; Manson AC; DeLyser MR; Noid WG; Cremer PS
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2479-2484. PubMed ID: 28228526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.
    Athawale MV; Dordick JS; Garde S
    Biophys J; 2005 Aug; 89(2):858-66. PubMed ID: 15894642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction.
    Ganguly P; Boserman P; van der Vegt NFA; Shea JE
    J Am Chem Soc; 2018 Jan; 140(1):483-492. PubMed ID: 29214802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies.
    Bruździak P; Adamczak B; Kaczkowska E; Czub J; Stangret J
    Phys Chem Chem Phys; 2015 Sep; 17(35):23155-64. PubMed ID: 26278847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When does trimethylamine N-oxide fold a polymer chain and urea unfold it?
    Mondal J; Stirnemann G; Berne BJ
    J Phys Chem B; 2013 Jul; 117(29):8723-32. PubMed ID: 23800089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.
    Mondal J; Halverson D; Li IT; Stirnemann G; Walker GC; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9270-5. PubMed ID: 26170324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counteraction of urea by trimethylamine N-oxide is due to direct interaction.
    Meersman F; Bowron D; Soper AK; Koch MH
    Biophys J; 2009 Nov; 97(9):2559-66. PubMed ID: 19883599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: insights from experiments and simulations.
    Anand G; Jamadagni SN; Garde S; Belfort G
    Langmuir; 2010 Jun; 26(12):9695-702. PubMed ID: 20334401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
    Sarma R; Paul S
    J Phys Chem B; 2013 May; 117(18):5691-704. PubMed ID: 23586614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of TMAO and urea in the hydration shell of the protein SNase.
    Voloshin V; Smolin N; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2019 Sep; 21(35):19469-19479. PubMed ID: 31461098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
    Zou Q; Bennion BJ; Daggett V; Murphy KP
    J Am Chem Soc; 2002 Feb; 124(7):1192-202. PubMed ID: 11841287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
    Ohto T; Hunger J; Backus EH; Mizukami W; Bonn M; Nagata Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):6909-6920. PubMed ID: 28149990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cosolvent Exclusion Drives Protein Stability in Trimethylamine
    Ganguly P; Bubák D; Polák J; Fagan P; Dračínský M; van der Vegt NFA; Heyda J; Shea JE
    J Phys Chem Lett; 2022 Sep; 13(34):7980-7986. PubMed ID: 35984361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double resolution model for studying TMAO/water effective interactions.
    Larini L; Shea JE
    J Phys Chem B; 2013 Oct; 117(42):13268-77. PubMed ID: 23786631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions.
    Seo J; Singh R; Ryu J; Choi JH
    J Chem Inf Model; 2024 Jan; 64(1):138-149. PubMed ID: 37983534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.