These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22971084)
1. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes. Cranswick MA; Meier KK; Shan X; Stubna A; Kaizer J; Mehn MP; Münck E; Que L Inorg Chem; 2012 Oct; 51(19):10417-26. PubMed ID: 22971084 [TBL] [Abstract][Full Text] [Related]
2. Sc Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545 [TBL] [Abstract][Full Text] [Related]
3. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV. Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795 [TBL] [Abstract][Full Text] [Related]
4. (Mu-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse. Yun D; García-Serres R; Chicalese BM; An YH; Huynh BH; Bollinger JM Biochemistry; 2007 Feb; 46(7):1925-32. PubMed ID: 17256972 [TBL] [Abstract][Full Text] [Related]
5. Structural and spectroscopic characterization of (mu-hydroxo or mu-oxo)(mu-peroxo)diiron(III) complexes: models for peroxo intermediates of non-heme diiron proteins. Zhang X; Furutachi H; Fujinami S; Nagatomo S; Maeda Y; Watanabe Y; Kitagawa T; Suzuki M J Am Chem Soc; 2005 Jan; 127(3):826-7. PubMed ID: 15656607 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338 [TBL] [Abstract][Full Text] [Related]
7. Versatile reactivity of a solvent-coordinated diiron(II) compound: synthesis and dioxygen reactivity of a mixed-valent Fe(II)Fe(III) species. Majumdar A; Apfel UP; Jiang Y; Moënne-Loccoz P; Lippard SJ Inorg Chem; 2014 Jan; 53(1):167-81. PubMed ID: 24359397 [TBL] [Abstract][Full Text] [Related]
8. Structural, EPR, and Mössbauer characterization of (μ-alkoxo)(μ-carboxylato)diiron(II,III) model complexes for the active sites of mixed-valent diiron enzymes. Li F; Chakrabarti M; Dong Y; Kauffmann K; Bominaar EL; Münck E; Que L Inorg Chem; 2012 Mar; 51(5):2917-29. PubMed ID: 22360600 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic and computational studies of (mu-oxo)(mu-1,2-peroxo)diiron(III) complexes of relevance to nonheme diiron oxygenase intermediates. Fiedler AT; Shan X; Mehn MP; Kaizer J; Torelli S; Frisch JR; Kodera M; Que L J Phys Chem A; 2008 Dec; 112(50):13037-44. PubMed ID: 18811130 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the identity and diiron core transformations of a (μ-oxo)diiron(III) complex supported by electron-rich tris(pyridyl-2-methyl)amine ligands. Do LH; Xue G; Que L; Lippard SJ Inorg Chem; 2012 Feb; 51(4):2393-402. PubMed ID: 22264120 [TBL] [Abstract][Full Text] [Related]
11. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. Gordon JB; Vilbert AC; DiMucci IM; MacMillan SN; Lancaster KM; Moënne-Loccoz P; Goldberg DP J Am Chem Soc; 2019 Nov; 141(44):17533-17547. PubMed ID: 31647656 [TBL] [Abstract][Full Text] [Related]
12. Generation of a μ-1,2-hydroperoxo Fe Walleck S; Zimmermann TP; Hachmeister H; Pilger C; Huser T; Katz S; Hildebrandt P; Stammler A; Bögge H; Bill E; Glaser T Nat Commun; 2022 Mar; 13(1):1376. PubMed ID: 35296656 [TBL] [Abstract][Full Text] [Related]
13. Electronic structures and spectroscopic signatures of diiron intermediates generated by O Ekanayake DM; Pham D; Probst AL; Miller JR; Popescu CV; Fiedler AT Dalton Trans; 2021 Oct; 50(40):14432-14443. PubMed ID: 34570147 [TBL] [Abstract][Full Text] [Related]
14. Oxygen activation by a mixed-valent, diiron(II/III) cluster in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Xing G; Barr EW; Diao Y; Hoffart LM; Prabhu KS; Arner RJ; Reddy CC; Krebs C; Bollinger JM Biochemistry; 2006 May; 45(17):5402-12. PubMed ID: 16634621 [TBL] [Abstract][Full Text] [Related]
16. Characterization of two distinct adducts in the reaction of a nonheme diiron(II) complex with O2. Frisch JR; Vu VV; Martinho M; Münck E; Que L Inorg Chem; 2009 Sep; 48(17):8325-36. PubMed ID: 19610611 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin. Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213 [TBL] [Abstract][Full Text] [Related]
18. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. Yoon S; Lippard SJ J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272 [TBL] [Abstract][Full Text] [Related]
19. Carboxylate as the protonation site in (Peroxo)diiron(III) model complexes of soluble methane monooxygenase and related diiron proteins. Do LH; Hayashi T; Moënne-Loccoz P; Lippard SJ J Am Chem Soc; 2010 Feb; 132(4):1273-5. PubMed ID: 20055391 [TBL] [Abstract][Full Text] [Related]
20. Dioxygen binding to complexes with Fe(II)2(mu-OH)2 cores: steric control of activation barriers and O2-adduct formation. Kryatov SV; Taktak S; Korendovych IV; Rybak-Akimova EV; Kaizer J; Torelli S; Shan X; Mandal S; MacMurdo VL; Mairata i Payeras A; Que L Inorg Chem; 2005 Jan; 44(1):85-99. PubMed ID: 15627364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]