BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22971218)

  • 1. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement.
    Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC
    J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
    Li H; Yu H; Chen T
    Microsc Microanal; 2012 Oct; 18(5):1021-9. PubMed ID: 23026309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction.
    Zhang J; Li H; Chai L; Zhang L; Qu J; Chen T
    J Microsc; 2015 Feb; 257(2):104-16. PubMed ID: 25354559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses.
    Camuzeaux B; Spriet C; Héliot L; Coll J; Duterque-Coquillaud M
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1107-14. PubMed ID: 15922298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs.
    Feige JN; Sage D; Wahli W; Desvergne B; Gelman L
    Microsc Res Tech; 2005 Sep; 68(1):51-8. PubMed ID: 16208719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spying on protein interactions in living cells with reconstituted scarlet light.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    Analyst; 2018 Oct; 143(21):5161-5169. PubMed ID: 30255175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells.
    Wang L; Chen T; Qu J; Wei X
    Micron; 2009 Dec; 40(8):811-20. PubMed ID: 19647441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel lambda FRET spectral confocal microscopy imaging method.
    Megías D; Marrero R; Martínez Del Peso B; García MA; Bravo-Cordero JJ; García-Grande A; Santos A; Montoya MC
    Microsc Res Tech; 2009 Jan; 72(1):1-11. PubMed ID: 18785251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.