BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22971227)

  • 1. Characterization of a cobalt-specific P(1B)-ATPase.
    Zielazinski EL; Cutsail GE; Hoffman BM; Stemmler TL; Rosenzweig AC
    Biochemistry; 2012 Oct; 51(40):7891-900. PubMed ID: 22971227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P
    Smith AT; Ross MO; Hoffman BM; Rosenzweig AC
    Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a hemerythrin-like domain in a P1B-type transport ATPase.
    Traverso ME; Subramanian P; Davydov R; Hoffman BM; Stemmler TL; Rosenzweig AC
    Biochemistry; 2010 Aug; 49(33):7060-8. PubMed ID: 20672819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and ion-release mechanism of P
    Grønberg C; Hu Q; Mahato DR; Longhin E; Salustros N; Duelli A; Lyu P; Bågenholm V; Eriksson J; Rao KU; Henderson DI; Meloni G; Andersson M; Croll T; Godaly G; Wang K; Gourdon P
    Elife; 2021 Dec; 10():. PubMed ID: 34951590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2.
    Eren E; Kennedy DC; Maroney MJ; Argüello JM
    J Biol Chem; 2006 Nov; 281(45):33881-91. PubMed ID: 16973620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane type-2-like Cu2+ site in the P1B-3-type ATPase CopB: implications for metal selectivity.
    Meloni G; Zhang L; Rees DC
    ACS Chem Biol; 2014 Jan; 9(1):116-21. PubMed ID: 24144006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases.
    Patel SJ; Lewis BE; Long JE; Nambi S; Sassetti CM; Stemmler TL; Argüello JM
    J Biol Chem; 2016 May; 291(22):11529-39. PubMed ID: 27022029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sulfur-based transport pathway in Cu+-ATPases.
    Mattle D; Zhang L; Sitsel O; Pedersen LT; Moncelli MR; Tadini-Buoninsegni F; Gourdon P; Rees DC; Nissen P; Meloni G
    EMBO Rep; 2015 Jun; 16(6):728-40. PubMed ID: 25956886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn(2+)-ATPases.
    Raimunda D; Subramanian P; Stemmler T; Argüello JM
    Biochim Biophys Acta; 2012 May; 1818(5):1374-7. PubMed ID: 22387457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence.
    Argüello JM; González-Guerrero M; Raimunda D
    Biochemistry; 2011 Nov; 50(46):9940-9. PubMed ID: 21999638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.
    Laurent C; Lekeux G; Ukuwela AA; Xiao Z; Charlier JB; Bosman B; Carnol M; Motte P; Damblon C; Galleni M; Hanikenne M
    Plant Mol Biol; 2016 Mar; 90(4-5):453-66. PubMed ID: 26797794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport.
    Mills RF; Peaston KA; Runions J; Williams LE
    PLoS One; 2012; 7(8):e42640. PubMed ID: 22880063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
    Mandal AK; Yang Y; Kertesz TM; Argüello JM
    J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues.
    Bissig KD; Wunderli-Ye H; Duda PW; Solioz M
    Biochem J; 2001 Jul; 357(Pt 1):217-23. PubMed ID: 11415452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes.
    Wu CC; Gardarin A; Martel A; Mintz E; Guillain F; Catty P
    J Biol Chem; 2006 Oct; 281(40):29533-41. PubMed ID: 16835223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition.
    Tottey S; Rondet SA; Borrelly GP; Robinson PJ; Rich PR; Robinson NJ
    J Biol Chem; 2002 Feb; 277(7):5490-7. PubMed ID: 11739376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.