BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22971419)

  • 1. Recurrent unexplained hyperammonemia in an adolescent with arginase deficiency.
    Zhang Y; Landau YE; Miller DT; Marsden D; Berry GT; Kellogg MD
    Clin Biochem; 2012 Dec; 45(18):1583-6. PubMed ID: 22971419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginase I deficiency: severe infantile presentation with hyperammonemia: more common than reported?
    Jain-Ghai S; Nagamani SC; Blaser S; Siriwardena K; Feigenbaum A
    Mol Genet Metab; 2011; 104(1-2):107-11. PubMed ID: 21802329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent hyperammonemia is associated with complications and poor outcomes in patients with acute liver failure.
    Kumar R; Shalimar ; Sharma H; Prakash S; Panda SK; Khanal S; Acharya SK
    Clin Gastroenterol Hepatol; 2012 Aug; 10(8):925-31. PubMed ID: 22521861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The risk of asymptomatic hyperammonemia in children with idiopathic epilepsy treated with valproate: relationship to blood carnitine status.
    Hamed SA; Abdella MM
    Epilepsy Res; 2009 Sep; 86(1):32-41. PubMed ID: 19446440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urea-cycle enzyme deficiencies and an increased nitrogen load producing hyperammonemia in Reye's syndrome.
    Snodgrass PJ; DeLong GR
    N Engl J Med; 1976 Apr; 294(16):855-60. PubMed ID: 1250313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patient with arginase deficiency and episodic hyperammonemia successfully treated with menses cessation.
    Boles RG; Stone ML
    Mol Genet Metab; 2006 Dec; 89(4):390-1. PubMed ID: 16963300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy.
    Hu C; Tai DS; Park H; Cantero G; Cantero-Nieto G; Chan E; Yudkoff M; Cederbaum SD; Lipshutz GS
    Gene Ther; 2015 Feb; 22(2):111-5. PubMed ID: 25474440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold for toxicity from hyperammonemia in critically ill children.
    Ozanne B; Nelson J; Cousineau J; Lambert M; Phan V; Mitchell G; Alvarez F; Ducruet T; Jouvet P
    J Hepatol; 2012 Jan; 56(1):123-8. PubMed ID: 21703182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia.
    Tuchman M; Yudkoff M
    Mol Genet Metab; 1999 Jan; 66(1):10-5. PubMed ID: 9973542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency.
    Burrage LC; Sun Q; Elsea SH; Jiang MM; Nagamani SC; Frankel AE; Stone E; Alters SE; Johnson DE; Rowlinson SW; Georgiou G; ; Lee BH
    Hum Mol Genet; 2015 Nov; 24(22):6417-27. PubMed ID: 26358771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient hyperammonemia in seizures: a prospective study.
    Hung TY; Chen CC; Wang TL; Su CF; Wang RF
    Epilepsia; 2011 Nov; 52(11):2043-9. PubMed ID: 21972984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency.
    Scholl-Bürgi S; Sigl SB; Häberle J; Haberlandt E; Rostásy K; Ertl C; Eichinger-Öttl U; Heinz-Erian P; Karall D
    J Inherit Metab Dis; 2008 Dec; 31 Suppl 2():S323-8. PubMed ID: 19052914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased plasma and tissue guanidino compounds in a mouse model of hyperargininemia.
    Deignan JL; Marescau B; Livesay JC; Iyer RK; De Deyn PP; Cederbaum SD; Grody WW
    Mol Genet Metab; 2008 Feb; 93(2):172-8. PubMed ID: 17997338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria.
    Filippi L; Gozzini E; Fiorini P; Malvagia S; la Marca G; Donati MA
    Neonatology; 2010; 97(3):286-90. PubMed ID: 19887858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLC22A5 mutations in a patient with systemic primary carnitine deficiency: the first Korean case confirmed by biochemical and molecular investigation.
    Yoon YA; Lee DH; Ki CS; Lee SY; Kim JW; Lee YW; Park HD
    Ann Clin Lab Sci; 2012; 42(4):424-8. PubMed ID: 23090741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperammonemia due to a urea cycle enzyme deficiency in two dogs.
    Strombeck DR; Meyer DJ; Freedland RA
    J Am Vet Med Assoc; 1975 Jun; 166(11):1109-11. PubMed ID: 1133071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urea cycle disorders in Thai infants: a report of 5 cases.
    Wasant P; Srisomsap C; Liammongkolkul S; Svasti J
    J Med Assoc Thai; 2002 Aug; 85 Suppl 2():S720-31. PubMed ID: 12403252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic hyperammonemia, hyperlysinemia, and homocitrullinuria associated with decreased argininosuccinate synthetase and arginase activities.
    Sogawa H; Oyanagi K; Nakao T
    Pediatr Res; 1977 Sep; 11(9 Pt 1):949-53. PubMed ID: 904980
    [No Abstract]   [Full Text] [Related]  

  • 19. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency.
    Truong B; Allegri G; Liu XB; Burke KE; Zhu X; Cederbaum SD; Häberle J; Martini PGV; Lipshutz GS
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21150-21159. PubMed ID: 31501335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice.
    Hu C; Kasten J; Park H; Bhargava R; Tai DS; Grody WW; Nguyen QG; Hauschka SD; Cederbaum SD; Lipshutz GS
    Mol Ther; 2014 Oct; 22(10):1792-802. PubMed ID: 24888478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.