These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 22971884)
1. Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements. Hikihara Y; Tanaka S; Ohkawara K; Ishikawa-Takata K; Tabata I J Phys Act Health; 2012 Sep; 9(7):935-43. PubMed ID: 22971884 [TBL] [Abstract][Full Text] [Related]
2. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm. Hikihara Y; Tanaka C; Oshima Y; Ohkawara K; Ishikawa-Takata K; Tanaka S PLoS One; 2014; 9(4):e94940. PubMed ID: 24755646 [TBL] [Abstract][Full Text] [Related]
3. Effects of walking speed and step frequency on estimation of physical activity using accelerometers. Park J; Ishikawa-Takata K; Tanaka S; Mekata Y; Tabata I J Physiol Anthropol; 2011; 30(3):119-27. PubMed ID: 21636955 [TBL] [Abstract][Full Text] [Related]
4. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
5. Validity of estimating physical activity intensity using a triaxial accelerometer in healthy adults and older adults. Nagayoshi S; Oshima Y; Ando T; Aoyama T; Nakae S; Usui C; Kumagai S; Tanaka S BMJ Open Sport Exerc Med; 2019; 5(1):e000592. PubMed ID: 31749982 [TBL] [Abstract][Full Text] [Related]
6. Classifying household and locomotive activities using a triaxial accelerometer. Oshima Y; Kawaguchi K; Tanaka S; Ohkawara K; Hikihara Y; Ishikawa-Takata K; Tabata I Gait Posture; 2010 Mar; 31(3):370-4. PubMed ID: 20138524 [TBL] [Abstract][Full Text] [Related]
7. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities. Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535 [TBL] [Abstract][Full Text] [Related]
8. Estimation of the respiratory ventilation rate of preschool children in daily life using accelerometers. Kawahara J; Tanaka S; Tanaka C; Hikihara Y; Aoki Y; Yonemoto J J Air Waste Manag Assoc; 2011 Jan; 61(1):46-54. PubMed ID: 21305887 [TBL] [Abstract][Full Text] [Related]
9. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Montoye AHK; Begum M; Henning Z; Pfeiffer KA Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205 [TBL] [Abstract][Full Text] [Related]
10. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Hendelman D; Miller K; Baggett C; Debold E; Freedson P Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S442-9. PubMed ID: 10993413 [TBL] [Abstract][Full Text] [Related]
11. Validation of MET estimates and step measurement using the ActivPAL physical activity logger. Harrington DM; Welk GJ; Donnelly AE J Sports Sci; 2011 Mar; 29(6):627-33. PubMed ID: 21360402 [TBL] [Abstract][Full Text] [Related]
12. Daily physical activity in japanese preschool children evaluated by triaxial accelerometry: the relationship between period of engagement in moderate-to-vigorous physical activity and daily step counts. Tanaka C; Tanaka S J Physiol Anthropol; 2009 Nov; 28(6):283-8. PubMed ID: 20009376 [TBL] [Abstract][Full Text] [Related]
13. Locomotive and non-locomotive activities evaluated with a triaxial accelerometer in adults and elderly individuals. Tanaka C; Fujiwara Y; Sakurai R; Fukaya T; Yasunaga M; Tanaka S Aging Clin Exp Res; 2013 Dec; 25(6):637-43. PubMed ID: 24170329 [TBL] [Abstract][Full Text] [Related]
14. Raw and Count Data Comparability of Hip-Worn ActiGraph GT3X+ and Link Accelerometers. Montoye AHK; Nelson MB; Bock JM; Imboden MT; Kaminsky LA; Mackintosh KA; McNarry MA; Pfeiffer KA Med Sci Sports Exerc; 2018 May; 50(5):1103-1112. PubMed ID: 29283934 [TBL] [Abstract][Full Text] [Related]
15. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD). Vähä-Ypyä H; Vasankari T; Husu P; Mänttäri A; Vuorimaa T; Suni J; Sievänen H PLoS One; 2015; 10(8):e0134813. PubMed ID: 26292225 [TBL] [Abstract][Full Text] [Related]
16. Comparison of physical activity assessed using hip- and wrist-worn accelerometers. Kamada M; Shiroma EJ; Harris TB; Lee IM Gait Posture; 2016 Feb; 44():23-8. PubMed ID: 27004628 [TBL] [Abstract][Full Text] [Related]
18. Validation of uniaxial and triaxial accelerometers for the assessment of physical activity in preschool children. Adolph AL; Puyau MR; Vohra FA; Nicklas TA; Zakeri IF; Butte NF J Phys Act Health; 2012 Sep; 9(7):944-53. PubMed ID: 22207582 [TBL] [Abstract][Full Text] [Related]
19. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155 [TBL] [Abstract][Full Text] [Related]
20. Validity of the Nurses' health study physical activity questionnaire in estimating physical activity in adults with rheumatoid arthritis. Quinn T; Bs MF; von Heideken J; Iannaccone C; Shadick NA; Weinblatt M; Iversen MD BMC Musculoskelet Disord; 2017 May; 18(1):234. PubMed ID: 28569163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]