These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22972299)

  • 1. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.
    Vakarelski IU; Patankar NA; Marston JO; Chan DY; Thoroddsen ST
    Nature; 2012 Sep; 489(7415):274-7. PubMed ID: 22972299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Soft Matter; 2014 Aug; 10(31):5662-8. PubMed ID: 24849267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Highly Effective Boiling from Superhydrophobic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Phys Rev Lett; 2018 Apr; 120(17):174501. PubMed ID: 29756846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling.
    Jiang M; Wang Y; Liu F; Du H; Li Y; Zhang H; To S; Wang S; Pan C; Yu J; Quéré D; Wang Z
    Nature; 2022 Jan; 601(7894):568-572. PubMed ID: 35082423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
    Santos MV; Sansinena M; Chirife J; Zaritzky N
    Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boiling Transitions During Droplet Contact on Superheated Nano/Micro-Structured Surfaces.
    Saneie N; Kulkarni V; Fezzaa K; Patankar NA; Anand S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15774-15783. PubMed ID: 35343695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance.
    Može M; Senegačnik M; Gregorčič P; Hočevar M; Zupančič M; Golobič I
    ACS Appl Mater Interfaces; 2020 May; 12(21):24419-24431. PubMed ID: 32352743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.
    Kruse C; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Langmuir; 2013 Aug; 29(31):9798-806. PubMed ID: 23799305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leidenfrost point reduction on micropatterned metallic surfaces.
    del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ
    Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thermo-wetting instability driving Leidenfrost film collapse.
    Zhao TY; Patankar NA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13321-13328. PubMed ID: 32461357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-wetting droplets on hot superhydrophilic surfaces.
    Adera S; Raj R; Enright R; Wang EN
    Nat Commun; 2013; 4():2518. PubMed ID: 24077386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.
    Shahriari A; Wurz J; Bahadur V
    Langmuir; 2014 Oct; 30(40):12074-81. PubMed ID: 25225852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How ambient conditions affect the Leidenfrost temperature.
    van Limbeek MAJ; Ramírez-Soto O; Prosperetti A; Lohse D
    Soft Matter; 2021 Mar; 17(11):3207-3215. PubMed ID: 33623939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-adhesive lotus and other hydrophobic materials.
    Quéré D; Reyssat M
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1539-56. PubMed ID: 18192172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propulsion on a superhydrophobic ratchet.
    Dupeux G; Bourrianne P; Magdelaine Q; Clanet C; Quéré D
    Sci Rep; 2014 Jun; 4():5280. PubMed ID: 24923358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leidenfrost Self-Rewetting Drops.
    Ouenzerfi S; Harmand S; Schiffler J
    J Phys Chem B; 2018 May; 122(18):4922-4930. PubMed ID: 29672056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.