These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22972344)
1. Structural characteristics of active and inactive glutamate dehydrogenases from the hyperthermophile Pyrobaculum islandicum. Ohshima T Biosci Biotechnol Biochem; 2012; 76(9):1601-10. PubMed ID: 22972344 [TBL] [Abstract][Full Text] [Related]
2. The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. Bhuiya MW; Sakuraba H; Ohshima T; Imagawa T; Katunuma N; Tsuge H J Mol Biol; 2005 Jan; 345(2):325-37. PubMed ID: 15571725 [TBL] [Abstract][Full Text] [Related]
3. Unique active site formation in a novel galactose 1-phosphate uridylyltransferase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Ohshida T; Hayashi J; Yoneda K; Ohshima T; Sakuraba H Proteins; 2020 May; 88(5):669-678. PubMed ID: 31693208 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Sakuraba H; Kawai T; Yoneda K; Ohshima T Arch Biochem Biophys; 2011 Aug; 512(2):126-34. PubMed ID: 21645492 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characterization of two glutamate dehydrogenases with different cofactor specificities from a hyperthermophilic archaeon Pyrobaculum calidifontis. Wakamatsu T; Higashi C; Ohmori T; Doi K; Ohshima T Extremophiles; 2013 May; 17(3):379-89. PubMed ID: 23508687 [TBL] [Abstract][Full Text] [Related]
6. Intersubunit interaction induced by subunit rearrangement is essential for the catalytic activity of the hyperthermophilic glutamate dehydrogenase from Pyrobaculum islandicum. Goda S; Kojima M; Nishikawa Y; Kujo C; Kawakami R; Kuramitsu S; Sakuraba H; Hiragi Y; Ohshima T Biochemistry; 2005 Nov; 44(46):15304-13. PubMed ID: 16285734 [TBL] [Abstract][Full Text] [Related]
7. Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Gharib G; Rashid N; Bashir Q; Gardner QT; Akhtar M; Imanaka T Extremophiles; 2016 Jan; 20(1):57-67. PubMed ID: 26507956 [TBL] [Abstract][Full Text] [Related]
8. [Activation mechanism of the inactive hyperthermophilic glutamate dehydrogenases produced in Escherichia coli]. Goda S; Sakuraba H; Ohshima T Seikagaku; 2009 Dec; 81(12):1049-55. PubMed ID: 20077847 [No Abstract] [Full Text] [Related]
10. Enzymatic and structural characterization of an archaeal thiamin phosphate synthase. Hayashi M; Kobayashi K; Esaki H; Konno H; Akaji K; Tazuya K; Yamada K; Nakabayashi T; Nosaka K Biochim Biophys Acta; 2014 Apr; 1844(4):803-9. PubMed ID: 24583237 [TBL] [Abstract][Full Text] [Related]
11. Structure of crenactin, an archaeal actin homologue active at 90°C. Lindås AC; Chruszcz M; Bernander R; Valegård K Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):492-500. PubMed ID: 24531483 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the NADP Yoneda K; Sakuraba H; Araki T; Ohshima T Extremophiles; 2018 May; 22(3):395-405. PubMed ID: 29353380 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis. Bibi T; Ali M; Rashid N; Muhammad MA; Akhtar M Extremophiles; 2018 Mar; 22(2):247-257. PubMed ID: 29275440 [TBL] [Abstract][Full Text] [Related]
14. Enzymological characteristics of the hyperthermostable NAD-dependent glutamate dehydrogenase from the archaeon Pyrobaculum islandicum and effects of denaturants and organic solvents. Kujo C; Ohshima T Appl Environ Microbiol; 1998 Jun; 64(6):2152-7. PubMed ID: 9603828 [TBL] [Abstract][Full Text] [Related]
15. Pcal_0632, a phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Pyrobaculum calidifontis. Aziz I; Rashid N; Ashraf R; Siddiqui MA; Imanaka T; Akhtar M Extremophiles; 2018 Jan; 22(1):121-129. PubMed ID: 29177716 [TBL] [Abstract][Full Text] [Related]
16. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Lingaraju GM; Prota AE; Winkler FK DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520 [TBL] [Abstract][Full Text] [Related]
17. Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Díaz S; Pérez-Pomares F; Pire C; Ferrer J; Bonete MJ Extremophiles; 2006 Apr; 10(2):105-15. PubMed ID: 16200391 [TBL] [Abstract][Full Text] [Related]
18. The NAD-dependent glutamate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum: cloning, sequencing, and expression of the enzyme gene(1). Kujo C; Sakuraba H; Nunoura N; Ohshima T Biochim Biophys Acta; 1999 Oct; 1434(2):365-71. PubMed ID: 10525154 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of serine racemase from a hyperthermophilic archaeon, Pyrobaculum islandicum. Ohnishi M; Saito M; Wakabayashi S; Ishizuka M; Nishimura K; Nagata Y; Kasai S J Bacteriol; 2008 Feb; 190(4):1359-65. PubMed ID: 17965169 [TBL] [Abstract][Full Text] [Related]
20. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure. Lingaraju GM; Sartori AA; Kostrewa D; Prota AE; Jiricny J; Winkler FK Structure; 2005 Jan; 13(1):87-98. PubMed ID: 15642264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]