BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22972345)

  • 1. ATP-dependent export of neutral amino acids by vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ishimoto M; Sugimoto N; Sekito T; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2012; 76(9):1802-4. PubMed ID: 22972345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae.
    Tone J; Yoshimura A; Manabe K; Murao N; Sekito T; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2015; 79(5):782-9. PubMed ID: 25747199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T; Chardwiriyapreecha S; Sugimoto N; Ishimoto M; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(6):969-75. PubMed ID: 25036121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant.
    Sekito T; Nakamura K; Manabe K; Tone J; Sato Y; Murao N; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(7):1199-202. PubMed ID: 25229858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae.
    Chardwiriyapreecha S; Manabe K; Iwaki T; Kawano-Kawada M; Sekito T; Lunprom S; Akiyama K; Takegawa K; Kakinuma Y
    PLoS One; 2015; 10(6):e0130542. PubMed ID: 26083598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae.
    Matsuura K; Takagi H
    J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae.
    Tone J; Yamanaka A; Manabe K; Murao N; Kawano-Kawada M; Sekito T; Kakinuma Y
    Biosci Biotechnol Biochem; 2015; 79(2):190-5. PubMed ID: 25266154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins.
    Rebbeor JF; Connolly GC; Dumont ME; Ballatori N
    J Biol Chem; 1998 Dec; 273(50):33449-54. PubMed ID: 9837923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the yeast vacuolar membrane proton ATPase.
    Anraku Y; Umemoto N; Hirata R; Wada Y
    J Bioenerg Biomembr; 1989 Oct; 21(5):589-603. PubMed ID: 2531738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance.
    Banerjee S; Clapp K; Tarsio M; Kane PM
    J Biol Chem; 2019 Jun; 294(23):9161-9171. PubMed ID: 31023825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Kakinuma Y; Masuda N; Igarashi K
    Biochim Biophys Acta; 1992 Jun; 1107(1):126-30. PubMed ID: 1319738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vma9p need not be associated with the yeast V-ATPase for fully-coupled proton pumping activity in vitro.
    Bueler SA; Rubinstein JL
    Biochemistry; 2015 Jan; 54(3):853-8. PubMed ID: 25546637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase.
    Kane PM
    Microbiol Mol Biol Rev; 2006 Mar; 70(1):177-91. PubMed ID: 16524922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation and reversibility of vacuolar H(+)-ATPase.
    Hirata T; Nakamura N; Omote H; Wada Y; Futai M
    J Biol Chem; 2000 Jan; 275(1):386-9. PubMed ID: 10617629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana.
    Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV
    Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes.
    Samarão SS; Teodoro CE; Silva FE; Ribeiro CC; Granato TM; Bernardes NR; Retamal CA; Façanha AR; Okorokova-Façanha AL; Okorokov LA
    Biochim Biophys Acta; 2009 Feb; 1788(2):303-13. PubMed ID: 19059377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation.
    Sattler T; Mayer A
    J Cell Biol; 2000 Oct; 151(3):529-38. PubMed ID: 11062255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V-ATPase, ScNhx1p and yeast vacuole fusion.
    Qiu QS
    J Genet Genomics; 2012 Apr; 39(4):167-71. PubMed ID: 22546538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.