These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22972561)

  • 1. Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening.
    Li R; Bajorath J
    J Comput Aided Mol Des; 2012 Oct; 26(10):1101-9. PubMed ID: 22972561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening.
    Vogt M; Stumpfe D; Geppert H; Bajorath J
    J Med Chem; 2010 Aug; 53(15):5707-15. PubMed ID: 20684607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Scaffold Hopping.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2017 Feb; 60(4):1238-1246. PubMed ID: 28001064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for effective virtual screening and scaffold-hopping in chemical compounds.
    Wale N; Karypis G; Watson IA
    Comput Syst Bioinformatics Conf; 2007; 6():403-14. PubMed ID: 17951843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a method to consistently quantify the structural distance between scaffolds and to assess scaffold hopping potential.
    Li R; Stumpfe D; Vogt M; Geppert H; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2507-14. PubMed ID: 21955025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification of scaffolds representing compounds active against individual targets and single or multiple target families.
    Hu Y; Bajorath J
    J Chem Inf Model; 2013 Feb; 53(2):312-26. PubMed ID: 23339619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse Topological Pharmacophore Graphs for Interpretable Scaffold Hopping.
    Nakano H; Miyao T; Swarit J; Funatsu K
    J Chem Inf Model; 2021 Jul; 61(7):3348-3360. PubMed ID: 34264667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. e-LEA3D: a computational-aided drug design web server.
    Douguet D
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W615-21. PubMed ID: 20444867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.
    Krueger BA; Dietrich A; Baringhaus KH; Schneider G
    Comb Chem High Throughput Screen; 2009 May; 12(4):383-96. PubMed ID: 19442066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?
    Dimova D; Bajorath J
    J Comput Aided Mol Des; 2017 Jul; 31(7):603-608. PubMed ID: 28623485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of molecular fingerprint similarity search in virtual screening.
    Muegge I; Mukherjee P
    Expert Opin Drug Discov; 2016; 11(2):137-48. PubMed ID: 26558489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization and virtual screening of the chemical universe database GDB-17.
    Ruddigkeit L; Blum LC; Reymond JL
    J Chem Inf Model; 2013 Jan; 53(1):56-65. PubMed ID: 23259841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A knowledge-based weighting approach to ligand-based virtual screening.
    Stiefl N; Zaliani A
    J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Database of bioactive ring systems with calculated properties and its use in bioisosteric design and scaffold hopping.
    Ertl P
    Bioorg Med Chem; 2012 Sep; 20(18):5436-42. PubMed ID: 22436390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds.
    Ertl P; Jelfs S; Mühlbacher J; Schuffenhauer A; Selzer P
    J Med Chem; 2006 Jul; 49(15):4568-73. PubMed ID: 16854061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Topological Pharmacophore Graphs for Scaffold Hopping.
    Nakano H; Miyao T; Funatsu K
    J Chem Inf Model; 2020 Apr; 60(4):2073-2081. PubMed ID: 32202780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.