These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22972619)

  • 1. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
    Li DW; Brüschweiler R
    J Biomol NMR; 2012 Nov; 54(3):257-65. PubMed ID: 22972619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.
    Gu X; Myung Y; Rodrigues CHM; Ascher DB
    Protein Sci; 2024 Aug; 33(8):e5096. PubMed ID: 38979954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction.
    Lehtivarjo J; Tuppurainen K; Hassinen T; Laatikainen R; Peräkylä M
    J Biomol NMR; 2012 Mar; 52(3):257-67. PubMed ID: 22314705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SHIFTX2: significantly improved protein chemical shift prediction.
    Han B; Liu Y; Ginzinger SW; Wishart DS
    J Biomol NMR; 2011 May; 50(1):43-57. PubMed ID: 21448735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based prediction of methyl chemical shifts in proteins.
    Sahakyan AB; Vranken WF; Cavalli A; Vendruscolo M
    J Biomol NMR; 2011 Aug; 50(4):331-46. PubMed ID: 21748266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPM_One: a static protein structure based chemical shift predictor.
    Li D; Brüschweiler R
    J Biomol NMR; 2015 Jul; 62(3):403-9. PubMed ID: 26091586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.
    Shen Y; Bax A
    J Biomol NMR; 2010 Sep; 48(1):13-22. PubMed ID: 20628786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of protein structural ensembles by chemical shifts.
    Baskaran K; Brunner K; Munte CE; Kalbitzer HR
    J Biomol NMR; 2010 Oct; 48(2):71-83. PubMed ID: 20680402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein backbone chemical shifts from Cα coordinates: extracting high resolution experimental observables from low resolution models.
    Frank AT; Law SM; Ahlstrom LS; Brooks CL
    J Chem Theory Comput; 2015 Jan; 11(1):325-31. PubMed ID: 25620895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method to measure protein side-chain mobility using NMR chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2013 Oct; 135(39):14536-9. PubMed ID: 24032347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting protein structural dynamics from NMR chemical shifts.
    Robustelli P; Stafford KA; Palmer AG
    J Am Chem Soc; 2012 Apr; 134(14):6365-74. PubMed ID: 22381384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.
    Markwick PR; Cervantes CF; Abel BL; Komives EA; Blackledge M; McCammon JA
    J Am Chem Soc; 2010 Feb; 132(4):1220-1. PubMed ID: 20063881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR; Salmon L; Nodet G; Blackledge M
    J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D prediction of protein (1)H chemical shifts.
    Lehtivarjo J; Hassinen T; Korhonen SP; Peräkylä M; Laatikainen R
    J Biomol NMR; 2009 Dec; 45(4):413-26. PubMed ID: 19876601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.
    Hong M; Mishanina TV; Cady SD
    J Am Chem Soc; 2009 Jun; 131(22):7806-16. PubMed ID: 19441789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.
    Shen Y; Bax A
    Methods Mol Biol; 2015; 1260():17-32. PubMed ID: 25502373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.