BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22972957)

  • 41. Cornering the fear engram: long-term synaptic changes in the lateral nucleus of the amygdala after fear conditioning.
    Kwon JT; Choi JS
    J Neurosci; 2009 Aug; 29(31):9700-3. PubMed ID: 19657022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons.
    Li G; Nair SS; Quirk GJ
    J Neurophysiol; 2009 Mar; 101(3):1629-46. PubMed ID: 19036872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways.
    Shin RM; Tsvetkov E; Bolshakov VY
    Neuron; 2006 Dec; 52(5):883-96. PubMed ID: 17145508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multimodal and Site-Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning.
    Lucas EK; Jegarl AM; Morishita H; Clem RL
    Neuron; 2016 Aug; 91(3):629-43. PubMed ID: 27427462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala.
    Schroeder BW; Shinnick-Gallagher P
    Eur J Neurosci; 2004 Jul; 20(2):549-56. PubMed ID: 15233764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study.
    Kim D; Samarth P; Feng F; Pare D; Nair SS
    Brain Struct Funct; 2016 May; 221(4):2163-82. PubMed ID: 25859631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.
    Shoji Y; Tanaka E; Yamamoto S; Maeda H; Higashi H
    J Neurophysiol; 1998 Aug; 80(2):638-46. PubMed ID: 9705457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala.
    Quirk GJ; Armony JL; LeDoux JE
    Neuron; 1997 Sep; 19(3):613-24. PubMed ID: 9331352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.
    Xi M; Fung SJ; Sampogna S; Chase MH
    Neuroscience; 2011 Dec; 197():181-90. PubMed ID: 21955600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spike-timing precision and neuronal synchrony are enhanced by an interaction between synaptic inhibition and membrane oscillations in the amygdala.
    Ryan SJ; Ehrlich DE; Jasnow AM; Daftary S; Madsen TE; Rainnie DG
    PLoS One; 2012; 7(4):e35320. PubMed ID: 22563382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.
    Song C; Ehlers VL; Moyer JR
    J Neurosci; 2015 Sep; 35(39):13511-24. PubMed ID: 26424895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdala.
    Keele NB; Neugebauer V; Shinnick-Gallagher P
    J Neurophysiol; 1999 May; 81(5):2056-65. PubMed ID: 10322047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of infralimbic inputs on intercalated amygdala neurons: a biophysical modeling study.
    Li G; Amano T; Pare D; Nair SS
    Learn Mem; 2011; 18(4):226-40. PubMed ID: 21436395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The central amygdala controls learning in the lateral amygdala.
    Yu K; Ahrens S; Zhang X; Schiff H; Ramakrishnan C; Fenno L; Deisseroth K; Zhao F; Luo MH; Gong L; He M; Zhou P; Paninski L; Li B
    Nat Neurosci; 2017 Dec; 20(12):1680-1685. PubMed ID: 29184202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices.
    Hong I; Kim J; Song B; Park K; Shin K; Eom KD; Han PL; Lee S; Choi S
    Neurosci Lett; 2012 Jan; 506(1):121-5. PubMed ID: 22079527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala.
    Huang CC; Chen CC; Liang YC; Hsu KS
    Int J Neuropsychopharmacol; 2014 Aug; 17(8):1233-42. PubMed ID: 24556032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The NO-cGMP-PKG signaling pathway coordinately regulates ERK and ERK-driven gene expression at pre- and postsynaptic sites following LTP-inducing stimulation of thalamo-amygdala synapses.
    Ping J; Schafe GE
    Neural Plast; 2010; 2010():540940. PubMed ID: 21461354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological properties of central amygdala neurons: species differences.
    Dumont EC; Martina M; Samson RD; Drolet G; Paré D
    Eur J Neurosci; 2002 Feb; 15(3):545-52. PubMed ID: 11876782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity.
    Schmid S; Fendt M
    Neuropharmacology; 2006 Feb; 50(2):154-64. PubMed ID: 16188284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabotropic glutamate receptors are involved in amygdaloid plasticity.
    Fendt M; Schmid S
    Eur J Neurosci; 2002 May; 15(9):1535-41. PubMed ID: 12028364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.