BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22973013)

  • 1. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia.
    Tan AM; Chakrabarty S; Kimura H; Martin JH
    J Neurosci; 2012 Sep; 32(37):12896-908. PubMed ID: 22973013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats.
    Hagg T; Baker KA; Emsley JG; Tetzlaff W
    Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of sensory transmission to motoneurons during cortical or sensory-evoked primary afferent depolarization (PAD) in humans.
    Metz K; Matos IC; Li Y; Afsharipour B; Thompson CK; Negro F; Quinlan KA; Bennett DJ; Gorassini MA
    J Physiol; 2023 May; 601(10):1897-1924. PubMed ID: 36916205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth.
    Carmel JB; Berrol LJ; Brus-Ramer M; Martin JH
    J Neurosci; 2010 Aug; 30(32):10918-26. PubMed ID: 20702720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury.
    Brus-Ramer M; Carmel JB; Chakrabarty S; Martin JH
    J Neurosci; 2007 Dec; 27(50):13793-801. PubMed ID: 18077691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury.
    Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME
    J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S; Martin JH
    Eur J Neurosci; 2011 Sep; 34(5):682-94. PubMed ID: 21896059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice.
    Steward O; Zheng B; Tessier-Lavigne M; Hofstadter M; Sharp K; Yee KM
    J Neurosci; 2008 Jul; 28(27):6836-47. PubMed ID: 18596159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroplasticity of spinal cord injury and repair.
    Martin JH
    Handb Clin Neurol; 2022; 184():317-330. PubMed ID: 35034745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys.
    Darian-Smith C; Lilak A; Garner J; Irvine KA
    J Neurosci; 2014 Sep; 34(37):12267-79. PubMed ID: 25209269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probable corticospinal tract control of spinal cord plasticity in the rat.
    Chen XY; Wolpaw JR
    J Neurophysiol; 2002 Feb; 87(2):645-52. PubMed ID: 11826033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
    Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T
    Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat.
    McCann MM; Fisher KM; Ahloy-Dallaire J; Darian-Smith C
    J Comp Neurol; 2020 Jun; 528(8):1293-1306. PubMed ID: 31769033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral cervical contusion spinal cord injury in rats.
    Anderson KD; Sharp KG; Steward O
    Exp Neurol; 2009 Nov; 220(1):9-22. PubMed ID: 19559699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.