These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22973184)

  • 1. Performance limitations of relay neurons.
    Agarwal R; Sarma SV
    PLoS Comput Biol; 2012; 8(8):e1002626. PubMed ID: 22973184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizing performance limitations of relay neurons: application to Parkinson's disease.
    Agarwal R; Santaniello S; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6573-6. PubMed ID: 25571502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical study of relay neuron's reliability: dependence on input and model parameters.
    Agarwal R; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2426-9. PubMed ID: 22254831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamic relays and cortical functioning.
    Sherman SM
    Prog Brain Res; 2005; 149():107-26. PubMed ID: 16226580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.
    Sherman SM; Koch C
    Exp Brain Res; 1986; 63(1):1-20. PubMed ID: 3015651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the thalamus in the flow of information to the cortex.
    Sherman SM; Guillery RW
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1695-708. PubMed ID: 12626004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thalamic relay functions.
    Sherman SM
    Prog Brain Res; 2001; 134():51-69. PubMed ID: 11702563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study.
    Agarwal R; Sarma SV
    J Comput Neurosci; 2012 Aug; 33(1):151-67. PubMed ID: 22237601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserving information in neural transmission.
    Sincich LC; Horton JC; Sharpee TO
    J Neurosci; 2009 May; 29(19):6207-16. PubMed ID: 19439598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus.
    Zhan XJ; Cox CL; Rinzel J; Sherman SM
    J Neurophysiol; 1999 May; 81(5):2360-73. PubMed ID: 10322072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bursting as an effective relay mode in a minimal thalamic model.
    Babadi B
    J Comput Neurosci; 2005; 18(2):229-43. PubMed ID: 15714271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does corticothalamic feedback control cortical velocity tuning?
    Hillenbrand U; van Hemmen JL
    Neural Comput; 2001 Feb; 13(2):327-55. PubMed ID: 11177438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptive field properties of cat perigeniculate neurons correlate with excitatory and inhibitory connectivity to LGN relay neurons.
    Osaki H; Naito T; Soma S; Sato H
    Neurosci Res; 2018 Jul; 132():26-36. PubMed ID: 28916470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus.
    Gutierrez C; Cox CL; Rinzel J; Sherman SM
    J Neurosci; 2001 Feb; 21(3):1022-32. PubMed ID: 11157087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelations of the rat's thalamic reticular and dorsal lateral geniculate nuclei.
    Hale PT; Sefton AJ; Baur LA; Cottee LJ
    Exp Brain Res; 1982; 45(1-2):217-29. PubMed ID: 6173248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-selectivity of a thalamocortical relay neuron during Parkinson's disease and deep brain stimulation: a computational study.
    Cagnan H; Meijer HG; van Gils SA; Krupa M; Heida T; Rudolph M; Wadman WJ; Martens HC
    Eur J Neurosci; 2009 Oct; 30(7):1306-17. PubMed ID: 19788577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance.
    Lu SM; Guido W; Sherman SM
    J Neurophysiol; 1992 Dec; 68(6):2185-98. PubMed ID: 1337104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling.
    Mukherjee P; Kaplan E
    J Neurophysiol; 1995 Sep; 74(3):1222-43. PubMed ID: 7500146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of the electrophysiological properties of thalamocortical relay neurons.
    McCormick DA; Huguenard JR
    J Neurophysiol; 1992 Oct; 68(4):1384-400. PubMed ID: 1331356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.