BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 22973944)

  • 1. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.
    Qu K; Wu L; Ren J; Qu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid.
    Jin T; Guo S; Zuo JL; Sun S
    Nanoscale; 2013 Jan; 5(1):160-3. PubMed ID: 23172252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation.
    Yang S; Shen C; Liang Y; Tong H; He W; Shi X; Zhang X; Gao HJ
    Nanoscale; 2011 Aug; 3(8):3277-84. PubMed ID: 21713273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium nanoparticles supported on vertically oriented reduced graphene oxide for methanol electro-oxidation.
    Yang L; Tang Y; Luo S; Liu C; Song H; Yan D
    ChemSusChem; 2014 Oct; 7(10):2907-13. PubMed ID: 25163894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene.
    Zhao J; Liu Z; Li H; Hu W; Zhao C; Zhao P; Shi D
    Langmuir; 2015 Mar; 31(8):2576-83. PubMed ID: 25692321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation.
    Wang ZL; Wang HL; Yan JM; Ping Y; O SI; Li SJ; Jiang Q
    Chem Commun (Camb); 2014 Mar; 50(21):2732-4. PubMed ID: 24473636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.
    Han HS; Yun M; Jeong H; Jeon S
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5699-705. PubMed ID: 26369141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pd-nanoparticle-supported, PDDA-functionalized graphene as a promising catalyst for alcohol oxidation.
    Bin D; Ren F; Wang Y; Zhai C; Wang C; Guo J; Yang P; Du Y
    Chem Asian J; 2015 Mar; 10(3):667-73. PubMed ID: 25601138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation.
    Tang S; Vongehr S; Zheng Z; Ren H; Meng X
    Nanotechnology; 2012 Jun; 23(25):255606. PubMed ID: 22652508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Nitrogen-Doped Mesoporous-Carbon-Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation.
    Ray C; Dutta S; Sahoo R; Roy A; Negishi Y; Pal T
    Chem Asian J; 2016 May; 11(10):1588-96. PubMed ID: 27016895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation.
    Lv T; Wang Y; Choi SI; Chi M; Tao J; Pan L; Huang CZ; Zhu Y; Xia Y
    ChemSusChem; 2013 Oct; 6(10):1923-30. PubMed ID: 24106017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.
    Selvaraj V; Grace AN; Alagar M
    J Colloid Interface Sci; 2009 May; 333(1):254-62. PubMed ID: 19243782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of lattice strain on the catalytic properties of Pd nanocrystals.
    Kuo CH; Lamontagne LK; Brodsky CN; Chou LY; Zhuang J; Sneed BT; Sheehan MK; Tsung CK
    ChemSusChem; 2013 Oct; 6(10):1993-2000. PubMed ID: 24106237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties.
    Xiang G; He J; Li T; Zhuang J; Wang X
    Nanoscale; 2011 Sep; 3(9):3737-42. PubMed ID: 21804982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW
    J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.
    Nasrollahzadeh M; Sajadi SM; Rostami-Vartooni A; Alizadeh M; Bagherzadeh M
    J Colloid Interface Sci; 2016 Mar; 466():360-8. PubMed ID: 26752431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation.
    Zhang X; Zhu J; Tiwary CS; Ma Z; Huang H; Zhang J; Lu Z; Huang W; Wu Y
    ACS Appl Mater Interfaces; 2016 May; 8(17):10858-65. PubMed ID: 27082661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation.
    Zhang X; Yin H; Wang J; Chang L; Gao Y; Liu W; Tang Z
    Nanoscale; 2013 Sep; 5(18):8392-7. PubMed ID: 23884237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.