These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22974502)
21. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. Moustakas M; Bayçu G; Gevrek N; Moustaka J; Csatári I; Rognes SE Environ Sci Pollut Res Int; 2019 Mar; 26(7):6613-6624. PubMed ID: 30623337 [TBL] [Abstract][Full Text] [Related]
22. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils. Mandáková T; Singh V; Krämer U; Lysak MA Plant Physiol; 2015 Sep; 169(1):674-89. PubMed ID: 26195571 [TBL] [Abstract][Full Text] [Related]
23. [Heterogeneity of epidermal cells in relation to nickel accumulation in Alyssum hyperaccumulators]. Baklanov IA Tsitologiia; 2011; 53(7):572-9. PubMed ID: 21938929 [TBL] [Abstract][Full Text] [Related]
24. Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments. Uraguchi S; Weber M; Clemens S Plant Cell Environ; 2019 Jun; 42(6):2003-2014. PubMed ID: 30809818 [TBL] [Abstract][Full Text] [Related]
25. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382 [TBL] [Abstract][Full Text] [Related]
26. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Leitenmaier B; Küpper H Plant Cell Environ; 2011 Feb; 34(2):208-19. PubMed ID: 20880204 [TBL] [Abstract][Full Text] [Related]
27. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Halimaa P; Lin YF; Ahonen VH; Blande D; Clemens S; Gyenesei A; Häikiö E; Kärenlampi SO; Laiho A; Aarts MG; Pursiheimo JP; Schat H; Schmidt H; Tuomainen MH; Tervahauta AI Environ Sci Technol; 2014 Mar; 48(6):3344-53. PubMed ID: 24559272 [TBL] [Abstract][Full Text] [Related]
28. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity. Gullì M; Marchi L; Fragni R; Buschini A; Visioli G Environ Mol Mutagen; 2018 Jul; 59(6):464-475. PubMed ID: 29656392 [TBL] [Abstract][Full Text] [Related]
29. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens. Fones HN; McCurrach H; Mithani A; Smith JA; Preston GM Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170725 [TBL] [Abstract][Full Text] [Related]
30. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Kobae Y; Uemura T; Sato MH; Ohnishi M; Mimura T; Nakagawa T; Maeshima M Plant Cell Physiol; 2004 Dec; 45(12):1749-58. PubMed ID: 15653794 [TBL] [Abstract][Full Text] [Related]
31. Speciation of zinc in fish feed by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry - using fractional factorial design for method optimisation and mild extraction conditions. Silva MS; Sele V; Sloth JJ; Araujo P; Amlund H J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jan; 1104():262-268. PubMed ID: 30576954 [TBL] [Abstract][Full Text] [Related]
32. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. do Nascimento CWA; Hesterberg D; Tappero R J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722 [TBL] [Abstract][Full Text] [Related]
33. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. Desbrosses-Fonrouge AG; Voigt K; Schröder A; Arrivault S; Thomine S; Krämer U FEBS Lett; 2005 Aug; 579(19):4165-74. PubMed ID: 16038907 [TBL] [Abstract][Full Text] [Related]
34. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. Tuomainen M; Tervahauta A; Hassinen V; Schat H; Koistinen KM; Lehesranta S; Rantalainen K; Häyrinen J; Auriola S; Anttonen M; Kärenlampi S J Exp Bot; 2010 Feb; 61(4):1075-87. PubMed ID: 20048332 [TBL] [Abstract][Full Text] [Related]
35. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals. Montaut S; Guido BS; Grison C; Rollin P Chem Biodivers; 2017 Mar; 14(3):. PubMed ID: 27981800 [TBL] [Abstract][Full Text] [Related]
36. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Kawachi M; Kobae Y; Mori H; Tomioka R; Lee Y; Maeshima M Plant Cell Physiol; 2009 Jun; 50(6):1156-70. PubMed ID: 19433490 [TBL] [Abstract][Full Text] [Related]
37. Cellular compartmentation of zinc in leaves of the hyperaccumulator thlaspi caerulescens. K pper H ; Jie Zhao F ; McGrath SP Plant Physiol; 1999 Jan; 119(1):305-12. PubMed ID: 9880373 [TBL] [Abstract][Full Text] [Related]
38. Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. Pollard AJ; Baker AJM New Phytol; 1996 Jan; 132(1):113-118. PubMed ID: 33863047 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Persson DP; Hansen TH; Laursen KH; Schjoerring JK; Husted S Metallomics; 2009 Sep; 1(5):418-26. PubMed ID: 21305146 [TBL] [Abstract][Full Text] [Related]
40. Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. Callahan DL; Kolev SD; O'Hair RAJ; Salt DE; Baker AJM New Phytol; 2007; 176(4):836-848. PubMed ID: 17897323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]