These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22974715)

  • 1. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Nano Lett; 2010 Oct; 10(10):4067-73. PubMed ID: 20845964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes.
    Babu JS; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051205. PubMed ID: 23004743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction of water slipping in carbon nanotubes.
    Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial slip friction at a fluid-solid cylindrical boundary.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jun; 136(24):244704. PubMed ID: 22755596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.
    Thomas JA; McGaughey AJ
    J Chem Phys; 2008 Feb; 128(8):084715. PubMed ID: 18315080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular theory of hydrodynamic boundary conditions in nanofluidics.
    Kobryn AE; Kovalenko A
    J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes.
    Majumder M; Chopra N; Andrews R; Hinds BJ
    Nature; 2005 Nov; 438(7064):44. PubMed ID: 16267546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
    Bhadauria R; Sanghi T; Aluru NR
    J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast mass transport through sub-2-nanometer carbon nanotubes.
    Holt JK; Park HG; Wang Y; Stadermann M; Artyukhin AB; Grigoropoulos CP; Noy A; Bakajin O
    Science; 2006 May; 312(5776):1034-7. PubMed ID: 16709781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality.
    Yang L; Guo Y
    Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.