These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 22974715)
21. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. Majumder M; Chopra N; Hinds BJ ACS Nano; 2011 May; 5(5):3867-77. PubMed ID: 21500837 [TBL] [Abstract][Full Text] [Related]
22. Curvature-dependent adsorption of water inside and outside armchair carbon nanotubes. Lei S; Paulus B; Li S; Schmidt B J Comput Chem; 2016 May; 37(14):1313-20. PubMed ID: 26988176 [TBL] [Abstract][Full Text] [Related]
23. Self-diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes. Zang J; Konduri S; Nair S; Sholl DS ACS Nano; 2009 Jun; 3(6):1548-56. PubMed ID: 19545168 [TBL] [Abstract][Full Text] [Related]
24. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Zheng YG; Ye HF; Zhang ZQ; Zhang HW Phys Chem Chem Phys; 2012 Jan; 14(2):964-71. PubMed ID: 22120002 [TBL] [Abstract][Full Text] [Related]
25. Molecular dynamics of transient oil flows in nanopores. II. Density profiles and molecular structure for decane in carbon nanotubes. Supple S; Quirke N J Chem Phys; 2005 Mar; 122(10):104706. PubMed ID: 15836344 [TBL] [Abstract][Full Text] [Related]
26. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in carbon nanotubes. Shi W; Sorescu DC J Phys Chem B; 2010 Nov; 114(46):15029-41. PubMed ID: 21047100 [TBL] [Abstract][Full Text] [Related]
27. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236 [TBL] [Abstract][Full Text] [Related]
28. Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution. Zhao WH; Shang B; Du SP; Yuan LF; Yang J; Zeng XC J Chem Phys; 2012 Jul; 137(3):034501. PubMed ID: 22830705 [TBL] [Abstract][Full Text] [Related]
29. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
30. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach. Mickel W; Joly L; Biben T J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948 [TBL] [Abstract][Full Text] [Related]
31. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids. Sahu P; Ali SM; Shenoy KT J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017 [TBL] [Abstract][Full Text] [Related]
32. Ultrafast diffusion of Ionic Liquids Confined in Carbon Nanotubes. Ghoufi A; Szymczyk A; Malfreyt P Sci Rep; 2016 Jun; 6():28518. PubMed ID: 27334208 [TBL] [Abstract][Full Text] [Related]
33. Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations. Sahu P; Ali SM Phys Chem Chem Phys; 2019 Oct; 21(38):21389-21406. PubMed ID: 31531503 [TBL] [Abstract][Full Text] [Related]
34. Relationship between induced fluid structure and boundary slip in nanoscale polymer films. Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484 [TBL] [Abstract][Full Text] [Related]
35. Carbon nanotube-MoS2 composites as solid lubricants. Zhang X; Luster B; Church A; Muratore C; Voevodin AA; Kohli P; Aouadi S; Talapatra S ACS Appl Mater Interfaces; 2009 Mar; 1(3):735-9. PubMed ID: 20355996 [TBL] [Abstract][Full Text] [Related]
36. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces. Oyarzua E; Walther JH; Zambrano HA Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599 [TBL] [Abstract][Full Text] [Related]
37. Effect of nanochannel dimension on the transport of water molecules. Su J; Guo H J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756 [TBL] [Abstract][Full Text] [Related]
38. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces. Niavarani A; Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634 [TBL] [Abstract][Full Text] [Related]
39. Friction based modeling of multicomponent transport at the nanoscale. Bhatia SK; Nicholson D J Chem Phys; 2008 Oct; 129(16):164709. PubMed ID: 19045300 [TBL] [Abstract][Full Text] [Related]
40. The effects of confinement inside carbon nanotubes on catalysis. Pan X; Bao X Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]