These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study. Thitaikumar A; Krouskop TA; Garra BS; Ophir J Phys Med Biol; 2007 May; 52(9):2615-33. PubMed ID: 17440256 [TBL] [Abstract][Full Text] [Related]
23. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography. Thitaikumar A; Krouskop TA; Ophir J Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125 [TBL] [Abstract][Full Text] [Related]
24. Breast tumor classification using axial shear strain elastography: a feasibility study. Thitaikumar A; Mobbs LM; Kraemer-Chant CM; Garra BS; Ophir J Phys Med Biol; 2008 Sep; 53(17):4809-23. PubMed ID: 18701768 [TBL] [Abstract][Full Text] [Related]
25. Direct mean strain estimation for elastography using nearest-neighbor weighted least-squares approach in the frequency domain. Hasan MK; Anas EM; Alam SK; Lee SY Ultrasound Med Biol; 2012 Oct; 38(10):1759-77. PubMed ID: 22818879 [TBL] [Abstract][Full Text] [Related]
26. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Ianculescu V; Ciolovan LM; Dunant A; Vielh P; Mazouni C; Delaloge S; Dromain C; Blidaru A; Balleyguier C Eur J Radiol; 2014 May; 83(5):773-7. PubMed ID: 24602803 [TBL] [Abstract][Full Text] [Related]
27. A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography. Guo L; Xu Y; Xu Z; Jiang J Ultrason Imaging; 2015 Oct; 37(4):277-93. PubMed ID: 25452434 [TBL] [Abstract][Full Text] [Related]
28. Dynamic frame pairing in real-time freehand elastography. Xia R; Tao G; Thittai AK IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):979-85. PubMed ID: 24859661 [TBL] [Abstract][Full Text] [Related]
29. An efficient block matching and spectral shift estimation algorithm with applications to ultrasound elastography. DiBattista A; Noble JA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):407-19. PubMed ID: 24569246 [TBL] [Abstract][Full Text] [Related]
30. Axial-shear strain imaging for differentiating benign and malignant breast masses. Xu H; Rao M; Varghese T; Sommer A; Baker S; Hall TJ; Sisney GA; Burnside ES Ultrasound Med Biol; 2010 Nov; 36(11):1813-24. PubMed ID: 20800948 [TBL] [Abstract][Full Text] [Related]
31. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Zhi H; Xiao XY; Yang HY; Ou B; Wen YL; Luo BM Acad Radiol; 2010 Oct; 17(10):1227-33. PubMed ID: 20650662 [TBL] [Abstract][Full Text] [Related]
32. A qualitative and quantitative assessment of simultaneous strain, shear wave, and point shear wave elastography to distinguish malignant and benign breast lesions. Altıntas Y; Bayrak M; Alabaz Ö; Celiktas M Acta Radiol; 2021 Sep; 62(9):1155-1162. PubMed ID: 33070635 [TBL] [Abstract][Full Text] [Related]
33. Bimodal Multiparameter-Based Approach for Benign-Malignant Classification of Breast Tumors. Ara SR; Alam F; Rahman MH; Akhter S; Awwal R; Hasan K Ultrasound Med Biol; 2015 Jul; 41(7):2022-38. PubMed ID: 25913281 [TBL] [Abstract][Full Text] [Related]
34. Differentiating between malignant and benign breast masses: factors limiting sonoelastographic strain ratio. Stachs A; Hartmann S; Stubert J; Dieterich M; Martin A; Kundt G; Reimer T; Gerber B Ultraschall Med; 2013 Apr; 34(2):131-6. PubMed ID: 23108926 [TBL] [Abstract][Full Text] [Related]
35. Ultrasound Strain Elastography for Breast Lesions: Computer-Aided Evaluation With Quantifiable Elastographic Features. Xiao Y; Zeng J; Zhang X; Niu LL; Qian M; Wang CZ; Zheng HR; Zheng RQ J Ultrasound Med; 2017 Jun; 36(6):1089-1100. PubMed ID: 28295467 [TBL] [Abstract][Full Text] [Related]
36. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography. Montagnon E; Hadj-Henni A; Schmitt C; Cloutier G IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):277-87. PubMed ID: 24474134 [TBL] [Abstract][Full Text] [Related]
37. In Vivo response to compression of 35 breast lesions observed with a two-dimensional locally regularized strain estimation method. Brusseau E; Detti V; Coulon A; Maissiat E; Boublay N; Berthezène Y; Fromageau J; Bush N; Bamber J Ultrasound Med Biol; 2014 Feb; 40(2):300-12. PubMed ID: 24315397 [TBL] [Abstract][Full Text] [Related]
38. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. Cho N; Moon WK; Kim HY; Chang JM; Park SH; Lyou CY J Ultrasound Med; 2010 Jan; 29(1):1-7. PubMed ID: 20040770 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of tomosynthesis elastography in a breast-mimicking phantom. Engelken FJ; Sack I; Klatt D; Fischer T; Fallenberg EM; Bick U; Diekmann F Eur J Radiol; 2012 Sep; 81(9):2169-73. PubMed ID: 21724357 [TBL] [Abstract][Full Text] [Related]
40. In vivo classification of breast masses using features derived from axial-strain and axial-shear images. Xu H; Varghese T; Jiang J; Zagzebski JA Ultrason Imaging; 2012 Oct; 34(4):222-36. PubMed ID: 23160475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]