These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
13. The control of elongation by the yeast Ccr4-not complex. Reese JC Biochim Biophys Acta; 2013 Jan; 1829(1):127-33. PubMed ID: 22975735 [TBL] [Abstract][Full Text] [Related]
14. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. de la Mata M; Kornblihtt AR Nat Struct Mol Biol; 2006 Nov; 13(11):973-80. PubMed ID: 17028590 [TBL] [Abstract][Full Text] [Related]
15. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Wilson MD; Harreman M; Svejstrup JQ Biochim Biophys Acta; 2013 Jan; 1829(1):151-7. PubMed ID: 22960598 [TBL] [Abstract][Full Text] [Related]
16. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Brès V; Gomes N; Pickle L; Jones KA Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409 [TBL] [Abstract][Full Text] [Related]
17. Regulation of alternative splicing through coupling with transcription and chromatin structure. Naftelberg S; Schor IE; Ast G; Kornblihtt AR Annu Rev Biochem; 2015; 84():165-98. PubMed ID: 26034889 [TBL] [Abstract][Full Text] [Related]
18. Complexity of RNA polymerase II elongation dynamics. Palangat M; Larson DR Biochim Biophys Acta; 2012 Jul; 1819(7):667-72. PubMed ID: 22480952 [TBL] [Abstract][Full Text] [Related]
19. A machine learning-based framework for modeling transcription elongation. Feng P; Xiao A; Fang M; Wan F; Li S; Lang P; Zhao D; Zeng J Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526657 [TBL] [Abstract][Full Text] [Related]
20. Chromatin, DNA structure and alternative splicing. Nieto Moreno N; Giono LE; Cambindo Botto AE; Muñoz MJ; Kornblihtt AR FEBS Lett; 2015 Nov; 589(22):3370-8. PubMed ID: 26296319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]