These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22975159)

  • 1. Studying the topological organization of the cerebral blood flow fluctuations in resting state.
    Melie-García L; Sanabria-Diaz G; Sánchez-Catasús C
    Neuroimage; 2013 Jan; 64():173-84. PubMed ID: 22975159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.
    Mechling AE; Hübner NS; Lee HL; Hennig J; von Elverfeldt D; Harsan LA
    Neuroimage; 2014 Aug; 96():203-15. PubMed ID: 24718287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics.
    Liang X; Connelly A; Calamante F
    Neuroimage; 2014 Feb; 87():265-75. PubMed ID: 24246488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.
    Khalili-Mahani N; van Osch MJ; de Rooij M; Beckmann CF; van Buchem MA; Dahan A; van Gerven JM; Rombouts SA
    Hum Brain Mapp; 2014 Mar; 35(3):929-42. PubMed ID: 23281174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS.
    Sasai S; Homae F; Watanabe H; Taga G
    Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional connectivity of the insula in the resting brain.
    Cauda F; D'Agata F; Sacco K; Duca S; Geminiani G; Vercelli A
    Neuroimage; 2011 Mar; 55(1):8-23. PubMed ID: 21111053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latent state-trait structure of cerebral blood flow in a resting state.
    Hermes M; Hagemann D; Britz P; Lieser S; Bertsch K; Naumann E; Walter C
    Biol Psychol; 2009 Feb; 80(2):196-202. PubMed ID: 18838099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of functional connectivity in the resting mouse brain.
    Nasrallah FA; Tay HC; Chuang KH
    Neuroimage; 2014 Feb; 86():417-24. PubMed ID: 24157920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.
    Tian L; Wang J; Yan C; He Y
    Neuroimage; 2011 Jan; 54(1):191-202. PubMed ID: 20688177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks.
    Sanabria-Diaz G; Melie-García L; Iturria-Medina Y; Alemán-Gómez Y; Hernández-González G; Valdés-Urrutia L; Galán L; Valdés-Sosa P
    Neuroimage; 2010 May; 50(4):1497-510. PubMed ID: 20083210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph theoretical modeling of brain connectivity.
    He Y; Evans A
    Curr Opin Neurol; 2010 Aug; 23(4):341-50. PubMed ID: 20581686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.
    Thompson WH; Fransson P
    Neuroimage; 2015 Nov; 121():227-42. PubMed ID: 26169321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mapping of basal and vasareactive cerebral blood flow using split-dose 123I-iodoamphetamine and single photon emission computed tomography.
    Kim KM; Watabe H; Hayashi T; Hayashida K; Katafuchi T; Enomoto N; Ogura T; Shidahara M; Takikawa S; Eberl S; Nakazawa M; Iida H
    Neuroimage; 2006 Dec; 33(4):1126-35. PubMed ID: 17035048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease.
    Zhang HY; Wang SJ; Xing J; Liu B; Ma ZL; Yang M; Zhang ZJ; Teng GJ
    Behav Brain Res; 2009 Jan; 197(1):103-8. PubMed ID: 18786570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EEG study of brain connectivity dynamics at the resting state.
    Dimitriadis SI; Laskaris NA; Tsirka V; Vourkas M; Micheloyannis S
    Nonlinear Dynamics Psychol Life Sci; 2012 Jan; 16(1):5-22. PubMed ID: 22196109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI.
    Liao W; Ding J; Marinazzo D; Xu Q; Wang Z; Yuan C; Zhang Z; Lu G; Chen H
    Neuroimage; 2011 Feb; 54(4):2683-94. PubMed ID: 21073960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.