These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22975260)

  • 21. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting.
    Li C; Sun H; Bai J; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Ippolito NM; Belardi G; Medici F; Piga L
    Waste Manag; 2016 May; 51():182-189. PubMed ID: 26777778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe-doped ZnO nanoparticles: the oxidation number and local charge on iron, studied by 57Fe Mößbauer spectroscopy and DFT calculations.
    Xiao J; Kuc A; Pokhrel S; Mädler L; Pöttgen R; Winter F; Frauenheim T; Heine T
    Chemistry; 2013 Mar; 19(10):3287-91. PubMed ID: 23400908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.
    Liu W; Yang J; Xiao B
    J Hazard Mater; 2009 Jan; 161(1):474-8. PubMed ID: 18457916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge for the preferential removal of iron.
    Majuste D; Mansur MB
    J Hazard Mater; 2009 Feb; 162(1):356-64. PubMed ID: 18579293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash.
    Wei CM; Liu QC; Wen J
    Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment.
    Fomchenko NV; Muravyov MI
    J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the mechanism of Na
    Wang X; Bian X; Huang Y; Qiao S; Wu W
    Environ Res; 2024 Nov; 261():119655. PubMed ID: 39034022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
    Li Y; Perederiy I; Papangelakis VG
    J Hazard Mater; 2008 Apr; 152(2):607-15. PubMed ID: 17728060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Belardi G; Lavecchia R; Medici F; Piga L
    Waste Manag; 2012 Oct; 32(10):1945-51. PubMed ID: 22677015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the carbon coating in Fe-C-TiO(2) photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process.
    Tryba B; Morawski AW; Inagaki M; Toyoda M
    Chemosphere; 2006 Aug; 64(7):1225-32. PubMed ID: 16403415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive Study on the Mechanism of Sulfating Roasting of Zinc Plant Residue with Iron Sulfates.
    Grudinsky P; Pankratov D; Kovalev D; Grigoreva D; Dyubanov V
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol.
    Xu A; Yang M; Qiao R; Du H; Sun C
    J Hazard Mater; 2007 Aug; 147(1-2):449-56. PubMed ID: 17300866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An alternative approach to recovering valuable metals from zinc phosphating sludge.
    Kuo YM
    J Hazard Mater; 2012 Jan; 201-202():265-72. PubMed ID: 22178286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recycling of hazardous waste as a new resource for nickel extraction.
    Gharabaghi M; Ejtemaei M; Irannajad M; Azadmehr AR
    Environ Technol; 2012; 33(13-15):1569-76. PubMed ID: 22988617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acidic leaching both of zinc and iron from basic oxygen furnace sludge.
    Trung ZH; Kukurugya F; Takacova Z; Orac D; Laubertova M; Miskufova A; Havlik T
    J Hazard Mater; 2011 Sep; 192(3):1100-7. PubMed ID: 21724325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores.
    Hyk W; Kitka K; Rudnicki D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA.
    Grabda M; Oleszek S; Shibata E; Nakamura T
    J Hazard Mater; 2014 Aug; 278():25-33. PubMed ID: 24945793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.