These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Experiments in comparative hearing: Georg von Békésy and beyond. Manley GA; Narins PM; Fay RR Hear Res; 2012 Nov; 293(1-2):44-50. PubMed ID: 22560960 [TBL] [Abstract][Full Text] [Related]
4. Békésy's contributions to our present understanding of sound conduction to the inner ear. Puria S; Rosowski JJ Hear Res; 2012 Nov; 293(1-2):21-30. PubMed ID: 22617841 [TBL] [Abstract][Full Text] [Related]
5. Introduction to “good vibrations”: a special issue to celebrate the 50th anniversary of the Nobel Prize to Georg von Békésy. Dallos P; Canlon B Hear Res; 2012 Nov; 293(1-2):1-2. PubMed ID: 23210130 [No Abstract] [Full Text] [Related]
6. Contributions of von Békésy to psychoacoustics. Moore BC Hear Res; 2012 Nov; 293(1-2):51-7. PubMed ID: 22561280 [TBL] [Abstract][Full Text] [Related]
7. Progress in cochlear physiology after Békésy. Guinan JJ; Salt A; Cheatham MA Hear Res; 2012 Nov; 293(1-2):12-20. PubMed ID: 22633944 [TBL] [Abstract][Full Text] [Related]
8. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Cormack J; Liu Y; Nam JH; Gracewski SM J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927 [TBL] [Abstract][Full Text] [Related]
9. Travelling waves and tonotopicity in the inner ear: a historical and comparative perspective. Manley GA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Oct; 204(9-10):773-781. PubMed ID: 30116889 [TBL] [Abstract][Full Text] [Related]
10. Five decades of research on cochlear mechanics. Zwislocki JJ J Acoust Soc Am; 1980 May; 67(5):1679-85. PubMed ID: 7372924 [TBL] [Abstract][Full Text] [Related]
11. Frequency analysis in the cochlea and the traveling wave of von Békésy. Naftalin L Physiol Chem Phys; 1980; 12(6):521-6. PubMed ID: 7267738 [TBL] [Abstract][Full Text] [Related]
12. Theory of cochlear mechanics. Zwislocki JJ Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254 [TBL] [Abstract][Full Text] [Related]
13. Some current concepts of cochlear mechanics. Zwislocki JJ Audiology; 1983; 22(6):517-29. PubMed ID: 6667173 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
16. Vibration of the organ of Corti within the cochlear apex in mice. Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025 [TBL] [Abstract][Full Text] [Related]
17. Basilar membrane tension calculations for the gerbil cochlea. Naidu RC; Mountain DC J Acoust Soc Am; 2007 Feb; 121(2):994-1002. PubMed ID: 17348522 [TBL] [Abstract][Full Text] [Related]
18. Simulation of the Multiphysical Coupling Behavior of Active Hearing Mechanism Within Spiral Cochlea. Ma J; Yao W; Hu B J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32005999 [TBL] [Abstract][Full Text] [Related]
19. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. Dewey JB; Applegate BE; Oghalai JS J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330 [TBL] [Abstract][Full Text] [Related]
20. In vivo measurement of basilar membrane vibration in the unopened chinchilla cochlea using high frequency ultrasound. Landry TG; Bance ML; Leadbetter J; Adamson RB; Brown JA J Acoust Soc Am; 2017 Jun; 141(6):4610. PubMed ID: 28679279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]