These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 22975388)
21. Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Cannella B; Cross AH; Raine CS Lab Invest; 1991 Jul; 65(1):23-31. PubMed ID: 1677055 [TBL] [Abstract][Full Text] [Related]
22. MUC18/MCAM (CD146), an activation antigen of human T lymphocytes. Pickl WF; Majdic O; Fischer GF; Petzelbauer P; Faé I; Waclavicek M; Stöckl J; Scheinecker C; Vidicki T; Aschauer H; Johnson JP; Knapp W J Immunol; 1997 Mar; 158(5):2107-15. PubMed ID: 9036955 [TBL] [Abstract][Full Text] [Related]
23. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. Begolka WS; Vanderlugt CL; Rahbe SM; Miller SD J Immunol; 1998 Oct; 161(8):4437-46. PubMed ID: 9780223 [TBL] [Abstract][Full Text] [Related]
24. In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. Pirko I; Johnson A; Ciric B; Gamez J; Macura SI; Pease LR; Rodriguez M FASEB J; 2004 Jan; 18(1):179-82. PubMed ID: 14630708 [TBL] [Abstract][Full Text] [Related]
25. Transglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation. Oh K; Park HB; Seo MW; Byoun OJ; Lee DS Clin Immunol; 2012 Nov; 145(2):122-32. PubMed ID: 23001131 [TBL] [Abstract][Full Text] [Related]
30. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. Haroon F; Drögemüller K; Händel U; Brunn A; Reinhold D; Nishanth G; Mueller W; Trautwein C; Ernst M; Deckert M; Schlüter D J Immunol; 2011 Jun; 186(11):6521-31. PubMed ID: 21515788 [TBL] [Abstract][Full Text] [Related]
31. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Alt C; Laschinger M; Engelhardt B Eur J Immunol; 2002 Aug; 32(8):2133-44. PubMed ID: 12209625 [TBL] [Abstract][Full Text] [Related]
32. In vivo blockade of macrophage migration inhibitory factor ameliorates acute experimental autoimmune encephalomyelitis by impairing the homing of encephalitogenic T cells to the central nervous system. Denkinger CM; Denkinger M; Kort JJ; Metz C; Forsthuber TG J Immunol; 2003 Feb; 170(3):1274-82. PubMed ID: 12538686 [TBL] [Abstract][Full Text] [Related]
33. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis. Matejuk A; Bakke AC; Hopke C; Dwyer J; Vandenbark AA; Offner H J Neurosci Res; 2004 Jul; 77(1):119-26. PubMed ID: 15197745 [TBL] [Abstract][Full Text] [Related]
34. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer's disease-related animal models despite reported blood-brain barrier disruption. Cheng Z; Zhang J; Liu H; Li Y; Zhao Y; Yang E Drug Metab Dispos; 2010 Aug; 38(8):1355-61. PubMed ID: 20427691 [TBL] [Abstract][Full Text] [Related]
35. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. Noorbakhsh F; Tsutsui S; Vergnolle N; Boven LA; Shariat N; Vodjgani M; Warren KG; Andrade-Gordon P; Hollenberg MD; Power C J Exp Med; 2006 Feb; 203(2):425-35. PubMed ID: 16476770 [TBL] [Abstract][Full Text] [Related]
36. Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Körner H; Lemckert FA; Chaudhri G; Etteldorf S; Sedgwick JD Eur J Immunol; 1997 Aug; 27(8):1973-81. PubMed ID: 9295034 [TBL] [Abstract][Full Text] [Related]
37. T-cell trafficking in the central nervous system. Sallusto F; Impellizzieri D; Basso C; Laroni A; Uccelli A; Lanzavecchia A; Engelhardt B Immunol Rev; 2012 Jul; 248(1):216-27. PubMed ID: 22725964 [TBL] [Abstract][Full Text] [Related]
38. Characterization of migration parameters on peripheral and central nervous system T cells following treatment of experimental allergic encephalomyelitis with CRYAB. Oyebamiji AI; Finlay TM; Hough RM; Hoghooghi V; Lim EM; Wong CH; Ousman SS J Neuroimmunol; 2013 Jun; 259(1-2):66-74. PubMed ID: 23602713 [TBL] [Abstract][Full Text] [Related]
39. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. Gimenez MA; Sim JE; Russell JH J Neuroimmunol; 2004 Jun; 151(1-2):116-25. PubMed ID: 15145610 [TBL] [Abstract][Full Text] [Related]
40. EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells. Wanke F; Moos S; Croxford AL; Heinen AP; Gräf S; Kalt B; Tischner D; Zhang J; Christen I; Bruttger J; Yogev N; Tang Y; Zayoud M; Israel N; Karram K; Reißig S; Lacher SM; Reichhold C; Mufazalov IA; Ben-Nun A; Kuhlmann T; Wettschureck N; Sailer AW; Rajewsky K; Casola S; Waisman A; Kurschus FC Cell Rep; 2017 Jan; 18(5):1270-1284. PubMed ID: 28147280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]