These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2297539)

  • 1. The triiodothyronine carrier of rat erythrocytes: asymmetry and mechanisms of trans-inhibition.
    Osty J; Zhou Y; Chantoux F; Francon J; Blondeau JP
    Biochim Biophys Acta; 1990 Jan; 1051(1):46-51. PubMed ID: 2297539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid hormone concentrative uptake in rat erythrocytes. Involvement of the tryptophan transport system T in countertransport of tri-iodothyronine and aromatic amino acids.
    Zhou Y; Samson M; Francon J; Blondeau JP
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):81-6. PubMed ID: 1731770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R
    Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a close link between the thyroid hormone transport system and the aromatic amino acid transport system T in erythrocytes.
    Zhou Y; Samson M; Osty J; Francon J; Blondeau JP
    J Biol Chem; 1990 Oct; 265(28):17000-4. PubMed ID: 2211606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R
    J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human erythrocyte ghost: a new experimental model for studying adenosine transport.
    Fernandez-Rivera-Rio L; Gonzalez-Garcia MR
    Arch Biochem Biophys; 1985 Jul; 240(1):246-56. PubMed ID: 4015103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triiodothyronine binding sites in the rat erythrocyte membrane: involvement in triiodothyronine transport and relation to the tryptophan transport System T.
    Samson M; Osty J; Francon J; Blondeau JP
    Biochim Biophys Acta; 1992 Jul; 1108(1):91-8. PubMed ID: 1643084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte-associated triiodothyronine in the rat: a source of hormone for target cells.
    Francon J; Osty J; Chantoux F; Blondeau JP
    Acta Endocrinol (Copenh); 1990 Mar; 122(3):341-8. PubMed ID: 2327215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane.
    Baker GF; Naftalin RJ
    Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier.
    Yayon A; Ginsburg H
    Biochim Biophys Acta; 1982 Apr; 686(2):197-203. PubMed ID: 7082662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification by photoaffinity labeling of a membrane thyroid hormone-binding protein associated with the triiodothyronine transport system in rat erythrocytes.
    Samson M; Osty J; Blondeau JP
    Endocrinology; 1993 Jun; 132(6):2470-6. PubMed ID: 8504750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature on the transport of galactose in human erythrocytes.
    Ginsburg H; Yeroushalmy S
    J Physiol; 1978 Sep; 282():399-417. PubMed ID: 722542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of thyroid hormones by human erythrocytes: kinetic characterization in adults and newborns.
    Osty J; Valensi P; Samson M; Francon J; Blondeau JP
    J Clin Endocrinol Metab; 1990 Dec; 71(6):1589-95. PubMed ID: 2229315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes.
    Ginsburg H; Ram D
    Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of red blood cell T3 uptake in hypothyroidism with or without hormonal replacement, in the rat.
    Moreau X; Lejeune PJ; Jeanningros R
    J Endocrinol Invest; 1999 Apr; 22(4):257-61. PubMed ID: 10342358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature on the transport of nucleosides in guinea pig erythrocytes.
    Jarvis SM; Martin BW
    Can J Physiol Pharmacol; 1986 Feb; 64(2):193-8. PubMed ID: 3697835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.