These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22975440)
1. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Cheng TS Aquat Toxicol; 2012 Nov; 124-125():171-8. PubMed ID: 22975440 [TBL] [Abstract][Full Text] [Related]
2. Calcium-mediated responses and glutamine synthetase expression in greater duckweed (Spirodela polyrhiza L.) under diethyl phthalate-induced stress. Cheng LJ; Hung MJ; Cheng YI; Cheng TS Aquat Toxicol; 2013 Nov; 144-145():124-32. PubMed ID: 24177215 [TBL] [Abstract][Full Text] [Related]
3. Oxidative effects and metabolic changes following exposure of greater duckweed (Spirodela polyrhiza) to diethyl phthalate. Cheng LJ; Cheng TS Aquat Toxicol; 2012 Mar; 109():166-75. PubMed ID: 22030411 [TBL] [Abstract][Full Text] [Related]
4. Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Cheng TS; Hung MJ; Cheng YI; Cheng LJ Aquat Toxicol; 2013 Nov; 144-145():265-74. PubMed ID: 24200992 [TBL] [Abstract][Full Text] [Related]
5. Toxic effects of pentachlorophenol on Lemna polyrhiza. Song Z; Huang G Ecotoxicol Environ Saf; 2007 Mar; 66(3):343-7. PubMed ID: 16325908 [TBL] [Abstract][Full Text] [Related]
6. Response of Spirodela polyrhiza to cerium: subcellular distribution, growth and biochemical changes. Xu Q; Jiang Y; Chu W; Su C; Hu D; Lu Q; Zhang T Ecotoxicol Environ Saf; 2017 May; 139():56-64. PubMed ID: 28110046 [TBL] [Abstract][Full Text] [Related]
7. Anti-oxidative status and hepatic enzymes following acute administration of diethyl phthalate in olive flounder Paralichthys olivaceus, a marine culture fish. Kang JC; Jee JH; Koo JG; Keum YH; Jo SG; Park KH Ecotoxicol Environ Saf; 2010 Sep; 73(6):1449-55. PubMed ID: 20674977 [TBL] [Abstract][Full Text] [Related]
8. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Tkalec M; Malarić K; Pevalek-Kozlina B Sci Total Environ; 2007 Dec; 388(1-3):78-89. PubMed ID: 17825879 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and molecular changes mediated by plasticizer diethyl phthalate in Chironomus circumdatus (bloodworms). Shaha CM; Pandit RS Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108650. PubMed ID: 31669664 [TBL] [Abstract][Full Text] [Related]
10. Ecophysiological tolerance of duckweeds exposed to copper. Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182 [TBL] [Abstract][Full Text] [Related]
11. Biochemical responses of two typical duckweeds exposed to dibutyl phthalate. Huang Q; Wang Q; Tan W; Song G; Lu G; Li F J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1615-26. PubMed ID: 16835115 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis thaliana mutants devoid of chloroplast glutamine synthetase (GS2) have non-lethal phenotype under photorespiratory conditions. Ferreira S; Moreira E; Amorim I; Santos C; Melo P Plant Physiol Biochem; 2019 Nov; 144():365-374. PubMed ID: 31622939 [TBL] [Abstract][Full Text] [Related]
13. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Singh V; Pandey B; Suthar S Chemosphere; 2018 Jun; 201():492-502. PubMed ID: 29529576 [TBL] [Abstract][Full Text] [Related]
14. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735 [TBL] [Abstract][Full Text] [Related]
15. Elucidating physiological and biochemical alterations in giant duckweed ( Sharma R; Kaur R PeerJ; 2020; 8():e8267. PubMed ID: 31942254 [TBL] [Abstract][Full Text] [Related]
16. The rate of CO(2) assimilation controls the expression and activity of glutamine synthetase through sugar formation in sunflower (Helianthus annuus L) leaves. Larios B; Aguera E; Cabello P; Maldonado JM; de la Haba P J Exp Bot; 2004 Jan; 55(394):69-75. PubMed ID: 14645390 [TBL] [Abstract][Full Text] [Related]
17. Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization. Teixeira J; Pereira S; Cánovas F; Salema R J Exp Bot; 2005 Feb; 56(412):663-71. PubMed ID: 15642719 [TBL] [Abstract][Full Text] [Related]
18. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Radić S; Babić M; Skobić D; Roje V; Pevalek-Kozlina B Ecotoxicol Environ Saf; 2010 Mar; 73(3):336-42. PubMed ID: 19914715 [TBL] [Abstract][Full Text] [Related]
19. Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Pécsváradi A; Nagy Z; Varga A; Vashegyi A; Labádi I; Galbács G; Zsoldos F Physiol Plant; 2009 Jan; 135(1):43-50. PubMed ID: 19121098 [TBL] [Abstract][Full Text] [Related]
20. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.). Geng Q; Li T; Li P; Wang X; Chu W; Ma Y; Ma H; Ni H Sci Total Environ; 2018 Sep; 634():1034-1041. PubMed ID: 29660861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]