These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 22975842)
1. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Davis AC; Cornelison MJ; Meyers KT; Rajapakshe A; Berry RE; Tollin G; Enemark JH Dalton Trans; 2013 Mar; 42(9):3043-9. PubMed ID: 22975842 [TBL] [Abstract][Full Text] [Related]
2. Effects of interdomain tether length and flexibility on the kinetics of intramolecular electron transfer in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Emesh S; Astashkin AV; Rajapakshe A; Berry RE; Tollin G; Enemark JH Biochemistry; 2010 Feb; 49(6):1290-6. PubMed ID: 20063894 [TBL] [Abstract][Full Text] [Related]
3. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer. Feng C; Wilson HL; Tollin G; Astashkin AV; Hazzard JT; Rajagopalan KV; Enemark JH Biochemistry; 2005 Oct; 44(42):13734-43. PubMed ID: 16229463 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids. Rajapakshe A; Meyers KT; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2012 Mar; 17(3):345-52. PubMed ID: 22057690 [TBL] [Abstract][Full Text] [Related]
5. Effects of large-scale amino acid substitution in the polypeptide tether connecting the heme and molybdenum domains on catalysis in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Davis AC; Tollin G; Enemark JH Metallomics; 2010 Nov; 2(11):766-70. PubMed ID: 21072368 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. Enemark JH J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922 [TBL] [Abstract][Full Text] [Related]
7. Essential role of conserved arginine 160 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH Biochemistry; 2003 Oct; 42(42):12235-42. PubMed ID: 14567685 [TBL] [Abstract][Full Text] [Related]
8. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119 [TBL] [Abstract][Full Text] [Related]
10. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. Johnson-Winters K; Davis AC; Arnold AR; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2013 Aug; 18(6):645-53. PubMed ID: 23779234 [TBL] [Abstract][Full Text] [Related]
11. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD; Kappler U; Hanson GR; Bernhardt PV Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Johnson-Winters K; Tollin G; Enemark JH Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399 [TBL] [Abstract][Full Text] [Related]
13. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH J Biol Chem; 2003 Jan; 278(5):2913-20. PubMed ID: 12424234 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular electron transfer in a bacterial sulfite dehydrogenase. Feng C; Kappler U; Tollin G; Enemark JH J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631 [TBL] [Abstract][Full Text] [Related]
15. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030 [TBL] [Abstract][Full Text] [Related]
16. Active-site dynamics and large-scale domain motions of sulfite oxidase: a molecular dynamics study. Pushie MJ; George GN J Phys Chem B; 2010 Mar; 114(9):3266-75. PubMed ID: 20158265 [TBL] [Abstract][Full Text] [Related]
17. Kinetic results for mutations of conserved residues H304 and R309 of human sulfite oxidase point to mechanistic complexities. Davis AC; Johnson-Winters K; Arnold AR; Tollin G; Enemark JH Metallomics; 2014 Sep; 6(9):1664-70. PubMed ID: 24968320 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism of intramolecular electron transfer in dimeric sulfite oxidase. Eh M; Kaczmarek AT; Schwarz G; Bender D J Biol Chem; 2022 Mar; 298(3):101668. PubMed ID: 35120924 [TBL] [Abstract][Full Text] [Related]
19. Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Feng C; Kedia RV; Hazzard JT; Hurley JK; Tollin G; Enemark JH Biochemistry; 2002 May; 41(18):5816-21. PubMed ID: 11980485 [TBL] [Abstract][Full Text] [Related]
20. The pH dependence of intramolecular electron transfer rates in sulfite oxidase at high and low anion concentrations. Pacheco A; Hazzard JT; Tollin G; Enemark JH J Biol Inorg Chem; 1999 Aug; 4(4):390-401. PubMed ID: 10555573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]