These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 22975946)
1. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Schneider T; Kohl B; Sauter T; Kratz K; Lendlein A; Ertel W; Schulze-Tanzil G Clin Hemorheol Microcirc; 2012; 52(2-4):325-36. PubMed ID: 22975946 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139 [TBL] [Abstract][Full Text] [Related]
3. Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering. Steck E; Bertram H; Walther A; Brohm K; Mrozik B; Rathmann M; Merle C; Gelinsky M; Richter W Tissue Eng Part A; 2010 Dec; 16(12):3697-707. PubMed ID: 20673020 [TBL] [Abstract][Full Text] [Related]
4. An electrospun degradable scaffold based on a novel hydrophilic polyester for tissue-engineering applications. Seyednejad H; Ji W; Schuurman W; Dhert WJ; Malda J; Yang F; Jansen JA; van Nostrum C; Vermonden T; Hennink WE Macromol Biosci; 2011 Dec; 11(12):1684-92. PubMed ID: 21932335 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
6. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Park GE; Pattison MA; Park K; Webster TJ Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
8. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. Eglin D; Grad S; Gogolewski S; Alini M J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318 [TBL] [Abstract][Full Text] [Related]
9. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Thakkar S; Ghebes CA; Ahmed M; Kelder C; van Blitterswijk CA; Saris D; Fernandes HA; Moroni L Biofabrication; 2013 Jun; 5(2):025003. PubMed ID: 23443652 [TBL] [Abstract][Full Text] [Related]
10. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188 [TBL] [Abstract][Full Text] [Related]
11. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
12. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137 [TBL] [Abstract][Full Text] [Related]
14. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
15. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering. Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057 [TBL] [Abstract][Full Text] [Related]
16. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707 [TBL] [Abstract][Full Text] [Related]
17. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393. Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015 [TBL] [Abstract][Full Text] [Related]
18. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
19. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491 [TBL] [Abstract][Full Text] [Related]
20. Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen. König J; Kohl B; Kratz K; Jung F; Lendlein A; Ertel W; Schulze-Tanzil G Clin Hemorheol Microcirc; 2013 Jan; 55(4):523-33. PubMed ID: 24099988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]