These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22975969)

  • 1. In vivo methods of nanotoxicology.
    Greish K; Thiagarajan G; Ghandehari H
    Methods Mol Biol; 2012; 926():235-53. PubMed ID: 22975969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotoxicity: the growing need for in vivo study.
    Fischer HC; Chan WC
    Curr Opin Biotechnol; 2007 Dec; 18(6):565-71. PubMed ID: 18160274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotoxicology and in vitro studies: the need of the hour.
    Arora S; Rajwade JM; Paknikar KM
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):151-65. PubMed ID: 22178382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotoxicology: the molecular science point of view.
    Pumera M
    Chem Asian J; 2011 Feb; 6(2):340-8. PubMed ID: 20725923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of in vitro systems for nanotoxicology: methodological considerations.
    Stone V; Johnston H; Schins RP
    Crit Rev Toxicol; 2009; 39(7):613-26. PubMed ID: 19650720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design.
    Singh AV; Laux P; Luch A; Sudrik C; Wiehr S; Wild AM; Santomauro G; Bill J; Sitti M
    Toxicol Mech Methods; 2019 Jun; 29(5):378-387. PubMed ID: 30636497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the divide between human and environmental nanotoxicology.
    Malysheva A; Lombi E; Voelcker NH
    Nat Nanotechnol; 2015 Oct; 10(10):835-44. PubMed ID: 26440721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM).
    Westmeier D; Stauber RH; Docter D
    Toxicol Appl Pharmacol; 2016 May; 299():53-7. PubMed ID: 26592323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics techniques for nanotoxicity investigations.
    Lv M; Huang W; Chen Z; Jiang H; Chen J; Tian Y; Zhang Z; Xu F
    Bioanalysis; 2015; 7(12):1527-44. PubMed ID: 26168257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials.
    Thomas K; Sayre P
    Toxicol Sci; 2005 Oct; 87(2):316-21. PubMed ID: 16049265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge gaps between nanotoxicological research and nanomaterial safety.
    Hu X; Li D; Gao Y; Mu L; Zhou Q
    Environ Int; 2016 Sep; 94():8-23. PubMed ID: 27203780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular toxicity of nanomaterials.
    Chang XL; Yang ST; Xing G
    J Biomed Nanotechnol; 2014 Oct; 10(10):2828-51. PubMed ID: 25992420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity investigations on nanomaterials.
    Oesch F; Landsiedel R
    Arch Toxicol; 2012 Jul; 86(7):985-94. PubMed ID: 22456836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A knowledge-based search engine to navigate the information thicket of nanotoxicology.
    Sauer UG; Kneuer C; Tentschert J; Wächter T; Schroeder M; Butzke D; Luch A; Liebsch M; Grune B; Götz ME
    Regul Toxicol Pharmacol; 2011 Feb; 59(1):47-52. PubMed ID: 20850491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues.
    Jain A; Ranjan S; Dasgupta N; Ramalingam C
    Crit Rev Food Sci Nutr; 2018 Jan; 58(2):297-317. PubMed ID: 27052385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity.
    Fako VE; Furgeson DY
    Adv Drug Deliv Rev; 2009 Jun; 61(6):478-86. PubMed ID: 19389433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.